
man pages comparison
echo
================ suckless ================
NAME
 echo — print arguments
SYNOPSIS
 echo [-n] [string ...]
DESCRIPTION
 echo writes each string to stdout, separated by spaces and terminated
by a newline.

OPTIONS
 -n Do not print the terminating newline.
STANDARDS
 POSIX.1-2013.
 The [-n] flag is an extension to that specification.
sbase October 8, 2015
sbase

================ 9front ================
NAME
 echo - print arguments
SYNOPSIS
 echo [-n] [arg ...]
DESCRIPTION
 Echo writes its arguments separated by blanks and terminated by a
newline on the standard output. Option -n suppresses the newline.

SOURCE
 /sys/src/cmd/echo.c
DIAGNOSTICS
 If echo draws an error while writing to standard output, the exit
status is Otherwise the exit status is empty.

================ BSD ================
NAME
 echo — write arguments to the standard output
SYNOPSIS
 echo [-n] [string ...]
DESCRIPTION
 The echo utility writes any specified operands, separated by single
blank (‘ ’) characters and followed by a newline (‘\n’) character, to
the standard output.

 When no operands are given, only the newline is written. The --
operand, which generally denotes an end to option processing, is treated
as part of string.

 The options are as follows:
 -n Do not print the trailing newline character.
EXIT STATUS
 The echo utility exits 0 on success, and >0 if an error occurs.
SEE ALSO
 csh(1), ksh(1), printf(1)
STANDARDS
 The echo utility is compliant with the IEEE Std 1003.1-2008 (“POSIX.1”)
specification.

 The flag [-n] conflicts with the behaviour mandated by the X/Open
System Interfaces option of the IEEE Std 1003.1-2008 (“POSIX.1”)
specification, which says it should be treated as part of string.
Additionally, echo does not support any of the backslash character
sequences mandated by XSI.

 echo also exists as a built-in to csh(1) and ksh(1), though with a
different syntax.

 Where portability is paramount, use printf(1).
HISTORY
 An echo utility appeared in Version 2 AT&T UNIX.
BSD March 16, 2018
================ GNU ================
NAME
 echo - display a line of text
SYNOPSIS
 echo [SHORT-OPTION]... [STRING]...
 echo LONG-OPTION
DESCRIPTION
 Echo the STRING(s) to standard output.
 -n do not output the trailing newline
 -e enable interpretation of backslash escapes
 -E disable interpretation of backslash escapes (default)
 --help display this help and exit
 --version
 output version information and exit
 If -e is in effect, the following sequences are recognized:
 \\ backslash
 \a alert (BEL)
 \b backspace
 \c produce no further output
 \e escape
 \f form feed
 \n new line
 \r carriage return
 \t horizontal tab
 \v vertical tab
 \0NNN byte with octal value NNN (1 to 3 digits)
 \xHH byte with hexadecimal value HH (1 to 2 digits)
 NOTE: your shell may have its own version of echo, which usually
supersedes the version described here. Please refer to your shell's
documentation for details about the options it supports.

 NOTE: printf(1) is a preferred alternative, which does not have issues
outputting option-like strings.

AUTHOR
 Written by Brian Fox and Chet Ramey.
REPORTING BUGS
 GNU coreutils online help: <https://www.gnu.org/software/coreutils/>
 Report any translation bugs to <https://translationproject.org/team/>
COPYRIGHT
 Copyright © 2022 Free Software Foundation, Inc. License GPLv3+: GNU
GPL version 3 or later <https://gnu.org/licenses/gpl.html>.

 This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
 printf(1)
 Full documentation <https://www.gnu.org/software/coreutils/echo>
 or available locally via: info '(coreutils) echo invocation'
GNU coreutils 9.1 September
2022

================ POSIX ================
PROLOG
 This manual page is part of the POSIX Programmer's Manual. The Linux
implementation of this interface may differ (consult the corresponding
Linux manual page for details of Linux behavior), or the interface may
not be implemented on Linux.

NAME
 echo — write arguments to standard output
SYNOPSIS
 echo [string...]
DESCRIPTION
 The echo utility writes its arguments to standard output, followed by
a <newline>. If there are no arguments, only the <newline> is written.

OPTIONS
 The echo utility shall not recognize the "--" argument in the manner
specified by Guideline 10 of the Base Definitions volume of POSIX.1‐

2017, Section 12.2, Utility Syntax Guidelines; "--" shall be recognized
as a string operand.

 Implementations shall not support any options.
OPERANDS
 The following operands shall be supported:
 string A string to be written to standard output. If the first
operand is -n, or if any of the operands contain a <backslash>
character, the results are implementation-defined.

 On XSI-conformant systems, if the first operand is -n, it shall
be treated as a string, not an option. The following character sequences
shall be recognized on XSI-conformant systems within any of the
arguments:

 \a Write an <alert>.
 \b Write a <backspace>.
 \c Suppress the <newline> that otherwise follows the final
argument in the output. All characters following the '\c' in the
arguments shall be ignored.

 \f Write a <form-feed>.
 \n Write a <newline>.
 \r Write a <carriage-return>.
 \t Write a <tab>.
 \v Write a <vertical-tab>.
 \\ Write a <backslash> character.
 \0num Write an 8-bit value that is the zero, one, two, or three-
digit octal number num.

STDIN
 Not used.
INPUT FILES
 None.
ENVIRONMENT VARIABLES
 The following environment variables shall affect the execution of
echo:

 LANG Provide a default value for the internationalization variables
that are unset or null. (See the Base Definitions volume of POSIX.1‐
2017, Section 8.2, Internationalization Variables for the precedence of
internationalization variables used to determine the values of locale
categories.)

 LC_ALL If set to a non-empty string value, override the values of all
the other internationalization variables.

 LC_CTYPE Determine the locale for the interpretation of sequences of
bytes of text data as characters (for example, single-byte as opposed to
multi-byte characters in arguments).

 LC_MESSAGES
 Determine the locale that should be used to affect the format and
contents of diagnostic messages written to standard error.

 NLSPATH Determine the location of message catalogs for the processing
of LC_MESSAGES.

ASYNCHRONOUS EVENTS
 Default.
STDOUT
 The echo utility arguments shall be separated by single <space>
characters and a <newline> character shall follow the last argument.
Output transformations shall occur based on the escape sequences in the
input. See the OPERANDS section.

STDERR
 The standard error shall be used only for diagnostic messages.
OUTPUT FILES
 None.
EXTENDED DESCRIPTION
 None.
EXIT STATUS
 The following exit values shall be returned:
 0 Successful completion.
 >0 An error occurred.
CONSEQUENCES OF ERRORS
 Default.
 The following sections are informative.
APPLICATION USAGE
 It is not possible to use echo portably across all POSIX systems
unless both -n (as the first argument) and escape sequences are omitted.

 The printf utility can be used portably to emulate any of the
traditional behaviors of the echo utility as follows (assuming that IFS
has its standard value or is unset):

 * The historic System V echo and the requirements on XSI
implementations in this volume of POSIX.1‐2017 are equivalent to:

 printf "%b\n$*"
 * The BSD echo is equivalent to:
 if ["X$1" = "X-n"]
 then
 shift
 printf "%s$*"
 else
 printf "%s\n$*"
 fi
 New applications are encouraged to use printf instead of echo.
EXAMPLES
 None.
RATIONALE
 The echo utility has not been made obsolescent because of its
extremely widespread use in historical applications. Conforming
applications that wish to do prompting without <newline> characters or
that could possibly be expecting to echo a -n, should use the printf
utility derived from the Ninth Edition system.

 As specified, echo writes its arguments in the simplest of ways. The
two different historical versions of echo vary in fatally incompatible
ways.

 The BSD echo checks the first argument for the string -n which causes
it to suppress the <newline> that would otherwise follow the final
argument in the output.

 The System V echo does not support any options, but allows escape
sequences within its operands, as described for XSI implementations in
the OPERANDS section.

 The echo utility does not support Utility Syntax Guideline 10 because
historical applications depend on echo to echo all of its arguments,
except for the -n option in the BSD version.

FUTURE DIRECTIONS
 None.
SEE ALSO
 printf
 The Base Definitions volume of POSIX.1‐2017, Chapter 8, Environment
Variables, Section 12.2, Utility Syntax Guidelines

COPYRIGHT
 Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1-2017, Standard for Information Technology --
Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the
Institute of Electrical and Electronics Engineers, Inc and The Open
Group. In the event of any discrepancy between this version and the
original IEEE and The Open Group Standard, the original IEEE and The
Open Group Standard is the referee document. The original Standard can
be obtained online at http://www.opengroup.org/unix/online.html .

 Any typographical or formatting errors that appear in this page are
most likely to have been introduced during the conversion of the source
files to man page format. To report such errors, see
https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017
ECHO(1POSIX)

cat
================ suckless ================
NAME

1/8

 cat — concatenate files
SYNOPSIS
 cat [-u] [file ...]
DESCRIPTION
 cat reads each file in sequence and writes it to stdout. If no file is
given cat reads from stdin.

OPTIONS
 -u Unbuffered output.
STANDARDS
 POSIX.1-2013.
sbase October 8, 2015
sbase

================ 9front ================
NAME
 cat, read - catenate files
SYNOPSIS
 cat [file ...]
 read [-m | -n nlines | -c nbytes | -r nrunes] [file ...]
DESCRIPTION
 Cat reads each file in sequence and writes it on the standard output.
Thus

 cat file
 prints a file and
 cat file1 file2 >file3
 concatenates the first two files and places the result on the third.
 If no file is given, cat reads from the standard input. Output is
buffered in blocks matching the input.

 Read copies to standard output exactly one line from the named file,
default standard input. It is useful in interactive rc(1) scripts.

 The -m flag causes it to continue reading and writing multiple lines
until end of file; -n causes it to read no more than nlines lines. The -
c and -r flags specify a number of bytes or runes to read instead of
lines.

 When reading lines, read always executes a single write for each line
of input, which can be helpful when preparing input to programs that
expect line-at-a-time data. It never reads any more data from the input
than it prints to the output.

SOURCE
 /sys/src/cmd/cat.c
 /sys/src/cmd/read.c
SEE ALSO
 cp(1)
DIAGNOSTICS
 Read exits with status eof on end of file or, in the -n case, if it
doesn't read nlines lines.

BUGS
 Beware of and which destroy input files before reading them.
================ BSD ================
NAME
 cat — concatenate and print files
SYNOPSIS
 cat [-benstuv] [file ...]
DESCRIPTION
 The cat utility reads files sequentially, writing them to the standard
output. The file operands are processed in command-line order. If file
is a single dash (‘-’) or absent, cat reads from the standard input.

 The options are as follows:
 -b Number the lines, but don't count blank lines.
 -e Print a dollar sign (‘$’) at the end of each line. Implies the -v
option to display non-printing characters.

 -n Number the output lines, starting at 1.
 -s Squeeze multiple adjacent empty lines, causing the output to be
single spaced.

 -t Print tab characters as ‘^I’. Implies the -v option to display
non-printing characters.

 -u The output is guaranteed to be unbuffered (see setvbuf(3)).
 -v Displays non-printing characters so they are visible. Control
characters print as ‘^X’ for control-X, with the exception of the tab
and EOL characters, which are displayed normally. The DEL character
(octal 0177)

 prints as ‘^?’. Non-ASCII characters (with the high bit set) are
printed as ‘M-’ (for meta) followed by the character for the low 7 bits.

EXIT STATUS
 The cat utility exits 0 on success, and >0 if an error occurs.
EXAMPLES
 Print the contents of file1 to the standard output:
 $ cat file1
 Sequentially print the contents of file1 and file2 to the file file3,
truncating file3 if it already exists. See the manual page for your
shell (e.g., sh(1)) for more information on redirection.

 $ cat file1 file2 > file3
 Print the contents of file1, print data it receives from the standard
input until it receives an EOF (‘^D’) character, print the contents of
file2, read and output contents of the standard input again, then
finally output the contents of file3. Note that if the standard input
referred to a file, the second dash on the command line would have no
effect, since the entire contents of the file would have already been
read and printed by cat when it encountered the first ‘-’ operand.

 $ cat file1 - file2 - file3
SEE ALSO
 head(1), less(1), more(1), pr(1), sh(1), tail(1), vis(1), setvbuf(3)
 Rob Pike, “UNIX Style, or cat -v Considered Harmful”, USENIX Summer
Conference Proceedings, 1983.

STANDARDS
 The cat utility is compliant with the specification.
 The flags [-benstv] are extensions to that specification.
HISTORY
 A cat utility appeared in Version 1 AT&T UNIX.
CAVEATS
 Because of the shell language mechanism used to perform output
redirection, the following command will cause the original data in file1
to be destroyed:

 $ cat file1 file2 > file1
 To append file2 to file1, instead use:
 $ cat file2 >> file1
BSD August 1, 2024
BSD

================ GNU ================
NAME
 cat - concatenate files and print on the standard output
SYNOPSIS
 cat [OPTION]... [FILE]...
DESCRIPTION
 Concatenate FILE(s) to standard output.
 With no FILE, or when FILE is -, read standard input.
 -A, --show-all
 equivalent to -vET
 -b, --number-nonblank
 number nonempty output lines, overrides -n
 -e equivalent to -vE
 -E, --show-ends
 display $ at end of each line
 -n, --number
 number all output lines
 -s, --squeeze-blank
 suppress repeated empty output lines
 -t equivalent to -vT
 -T, --show-tabs
 display TAB characters as ^I
 -u (ignored)
 -v, --show-nonprinting
 use ^ and M- notation, except for LFD and TAB

 --help display this help and exit
 --version
 output version information and exit
EXAMPLES
 cat f - g
 Output f's contents, then standard input, then g's contents.
 cat Copy standard input to standard output.
AUTHOR
 Written by Torbjorn Granlund and Richard M. Stallman.
REPORTING BUGS
 GNU coreutils online help: <https://www.gnu.org/software/coreutils/>
 Report any translation bugs to <https://translationproject.org/team/>
COPYRIGHT
 Copyright © 2022 Free Software Foundation, Inc. License GPLv3+: GNU
GPL version 3 or later <https://gnu.org/licenses/gpl.html>.

 This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
 tac(1)
 Full documentation <https://www.gnu.org/software/coreutils/cat>
 or available locally via: info '(coreutils) cat invocation'
GNU coreutils 9.1 September
2022 CAT(1)

================ POSIX ================
PROLOG
 This manual page is part of the POSIX Programmer's Manual. The Linux
implementation of this interface may differ (consult the corresponding
Linux manual page for details of Linux behavior), or the interface may
not be implemented on Linux.

NAME
 cat — concatenate and print files
SYNOPSIS
 cat [-u] [file...]
DESCRIPTION
 The cat utility shall read files in sequence and shall write their
contents to the standard output in the same sequence.

OPTIONS
 The cat utility shall conform to the Base Definitions volume of
POSIX.1‐2017, Section 12.2, Utility Syntax Guidelines.

 The following option shall be supported:
 -u Write bytes from the input file to the standard output without
delay as each is read.

OPERANDS
 The following operand shall be supported:
 file A pathname of an input file. If no file operands are specified,
the standard input shall be used. If a file is '-', the cat utility
shall read from the standard input at that point in the sequence. The
cat utility shall not close and reopen standard input when it is
referenced in this way, but shall accept multiple occurrences of '-' as
a file operand.

STDIN
 The standard input shall be used only if no file operands are
specified, or if a file operand is '-'. See the INPUT FILES section.

INPUT FILES
 The input files can be any file type.
ENVIRONMENT VARIABLES
 The following environment variables shall affect the execution of cat:
 LANG Provide a default value for the internationalization variables
that are unset or null. (See the Base Definitions volume of POSIX.1‐
2017, Section 8.2, Internationalization Variables for the precedence of
internationalization variables used to determine the values of locale
categories.)

 LC_ALL If set to a non-empty string value, override the values of all
the other internationalization variables.

 LC_CTYPE Determine the locale for the interpretation of sequences of
bytes of text data as characters (for example, single-byte as opposed to
multi-byte characters in arguments).

 LC_MESSAGES
 Determine the locale that should be used to affect the format and
contents of diagnostic messages written to standard error.

 NLSPATH Determine the location of message catalogs for the processing
of LC_MESSAGES.

ASYNCHRONOUS EVENTS
 Default.
STDOUT
 The standard output shall contain the sequence of bytes read from the
input files. Nothing else shall be written to the standard output. If
the standard output is a regular file, and is the same file as any of
the input file operands, the implementation may treat this as an error.

STDERR
 The standard error shall be used only for diagnostic messages.
OUTPUT FILES
 None.
EXTENDED DESCRIPTION
 None.
EXIT STATUS
 The following exit values shall be returned:
 0 All input files were output successfully.
 >0 An error occurred.
CONSEQUENCES OF ERRORS
 Default.
 The following sections are informative.
APPLICATION USAGE
 The -u option has value in prototyping non-blocking reads from FIFOs.
The intent is to support the following sequence:

 mkfifo foo
 cat -u foo > /dev/tty13 &
 cat -u > foo
 It is unspecified whether standard output is or is not buffered in the
default case. This is sometimes of interest when standard output is
associated with a terminal, since buffering may delay the output. The
presence of the -u option guarantees that unbuffered I/O is available.
It is implementation-defined whether the cat utility buffers output if
the -u option is not specified. Traditionally, the -u option is
implemented using the equivalent of the setvbuf() function defined in
the System Interfaces volume of POSIX.1‐2017.

EXAMPLES
 The following command:
 cat myfile
 writes the contents of the file myfile to standard output.
 The following command:
 cat doc1 doc2 > doc.all
 concatenates the files doc1 and doc2 and writes the result to doc.all.
 Because of the shell language mechanism used to perform output
redirection, a command such as this:

 cat doc doc.end > doc
 causes the original data in doc to be lost before cat even begins
execution. This is true whether the cat command fails with an error or
silently succeeds (the specification allows both behaviors). In order to
append the contents of doc.end without losing the original contents of
doc, this command should be used instead:

 cat doc.end >> doc
 The command:
 cat start - middle - end > file
 when standard input is a terminal, gets two arbitrary pieces of input
from the terminal with a single invocation of cat. Note, however, that
if standard input is a regular file, this would be equivalent to the
command:

 cat start - middle /dev/null end > file
 because the entire contents of the file would be consumed by cat the
first time '-' was used as a file operand and an end-of-file condition
would be detected immediately when '-' was referenced the second time.

2/8

RATIONALE
 Historical versions of the cat utility include the -e, -t, and -v,
options which permit the ends of lines, <tab> characters, and invisible
characters, respectively, to be rendered visible in the output. The
standard developers omitted these options because they provide too fine
a degree of control over what is made visible, and similar output can be
obtained using a command such as:

 sed -n l pathname
 The latter also has the advantage that its output is unambiguous,
whereas the output of historical cat -etv is not.

 The -s option was omitted because it corresponds to different
functions in BSD and System V-based systems. The BSD -s option to
squeeze blank lines can be accomplished by the shell script shown in the
following example:

 sed -n '
 # Write non-empty lines.
 /./ {
 p
 d
 }
 # Write a single empty line, then look for more empty lines.
 /^$/ p
 # Get next line, discard the held <newline> (empty line),
 # and look for more empty lines.
 :Empty
 /^$/ {
 N
 s/.//
 b Empty
 }
 # Write the non-empty line before going back to search
 # for the first in a set of empty lines.
 p
 '
 The System V -s option to silence error messages can be accomplished
by redirecting the standard error. Note that the BSD documentation for
cat uses the term ``blank line'' to mean the same as the POSIX ``empty
line'': a

 line consisting only of a <newline>.
 The BSD -n option was omitted because similar functionality can be
obtained from the -n option of the pr utility.

FUTURE DIRECTIONS
 None.
SEE ALSO
 more
 The Base Definitions volume of POSIX.1‐2017, Chapter 8, Environment
Variables, Section 12.2, Utility Syntax Guidelines

 The System Interfaces volume of POSIX.1‐2017, setvbuf()
COPYRIGHT
 Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1-2017, Standard for Information Technology --
Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the
Institute of Electrical and Electronics Engineers, Inc and The Open
Group. In the event of any discrepancy between this version and the
original IEEE and The Open Group Standard, the original IEEE and The
Open Group Standard is the referee document. The original Standard can
be obtained online at http://www.opengroup.org/unix/online.html .

 Any typographical or formatting errors that appear in this page are
most likely to have been introduced during the conversion of the source
files to man page format. To report such errors, see
https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017
CAT(1POSIX)

grep
================ suckless ================
NAME
 grep — search files for patterns
SYNOPSIS
 grep [-EFHchilnqsvx] [-e pattern] [-f file] [pattern] [file ...]
DESCRIPTION
 grep searches the input files for lines that match the pattern, a
regular expression as defined in regex(7) or re_format(7). By default
each matching line is printed to stdout. If no file is given grep reads
from stdin.

OPTIONS
 -E Match using extended regex.
 -F Match using fixed strings. Treat each pattern specified as a
string instead of a regular expression.

 -H Prefix each matching line with its filename in the output. This is
the default when there is more than one file specified.

 -c Print only a count of matching lines.
 -e pattern
 Specify a pattern used during the search of the input: an input
line is selected if it matches any of the specified patterns. This
option is most useful when multiple -e options are used to specify
multiple patterns, or when a pattern begins with a dash.

 -f file
 Read one or more patterns from the file named by the pathname file.
Patterns in file shall be terminated by a <newline>. A null pattern can
be specified by an empty line in pattern_file. Unless the -E or -F
option is also specified, each pattern shall be treated as a BRE. (`-').

 -h Do not prefix each line with 'filename:' prefix.
 -i Match lines case insensitively.
 -l Print only the names of files with matching lines.
 -n Prefix each matching line with its line number in the input.
 -q Print nothing, only return status.
 -s Suppress the error messages ordinarily written for nonexistent or
unreadable files.

 -v Select lines which do not match the pattern.
 -w The expression is searched for as a word (as if surrounded by '\<'
and '\>').

 -x Consider only input lines that use all characters in the line
excluding the terminating <newline> to match an entire fixed string or
regular expression to be matching lines.

EXIT STATUS
 0 One or more lines were matched.
 1 No lines were matched.
 > 1 An error occurred.
SEE ALSO
 sed(1), re_format(7), regex(7)
STANDARDS
 POSIX.1-2013.
 The [-Hhw] flags are an extension to that specification.
Sbase
================ 9front ================
NAME
 grep, g - search a file for a pattern
SYNOPSIS
 grep [-bchiLlnsv] [-e] pattern | -f patternfile [file ...]
 g [flags] pattern [file ...]
DESCRIPTION
 Grep searches the input files (standard input default) for lines that
match the pattern, a regular expression as defined in regexp(6) with the
addition of a newline character as an alternative (substitute for |)
with lowest precedence. Normally, each line matching the pattern is
`selected', and each selected line is copied to the standard output.

 The options are:
 -c Print only a count of matching lines.
 -h Do not print file name tags (headers) with output lines.

 -e The following argument is taken as a pattern. This option makes
it easy to specify patterns that might confuse argument parsing, such as
-n.

 -i Ignore alphabetic case distinctions. The implementation folds
into lower case all letters in the pattern and input before
interpretation. Matched lines are printed in their original form.

 -l (ell) Print the names of files with selected lines; don't print
the lines.

 -L Print the names of files with no selected lines; the converse of
-l.

 -n Mark each printed line with its line number counted in its file.
 -s Produce no output, but return status.
 -v Reverse: print lines that do not match the pattern.
 -f The pattern argument is the name of a file containing regular
expressions one per line.

 -b Don't buffer the output: write each output line as soon as it is
discovered.

 Output lines are tagged by file name when there is more than one input
file. (To force this tagging, include /dev/null as a file name
argument.)

 Care should be taken when using the shell metacharacters $*[^|()=\ and
newline in pattern; it is safest to enclose the entire expression in
single quotes '...'. An expression starting with '*' will treat the rest
of the expression as literal characters.

 G invokes grep with -n (plus additional flags, if provided) and forces
tagging of output lines by file name. If no files are listed, it
recursively searches the current directory for all files matching *.b
*.c *.C *.h *.l *.m *.s *.y *.asm *.awk *.cc *.cgi *.cpp *.cs *.cxx *.go
*.goc *.hpp *.hs *.hxx *.in *.java *.lua *.lx *.mk *.ml *.mli *.ms *.myr
*.pl *.py *.rc *.sh *.tex *.txt *.xy

 The recursive search can be suppressed by passing g the -n flag.
SOURCE
 /sys/src/cmd/grep
 /rc/bin/g
SEE ALSO
 ed(1), awk(1), sed(1), sam(1), regexp(6)
DIAGNOSTICS
 Exit status is null if any lines are selected, or non-null when no
lines are selected or an error occurs.

================ BSD ================
NAME
 grep, egrep, fgrep, rgrep — file pattern searcher
SYNOPSIS
 grep [-abcdDEFGHhIiLlmnOopqRSsUVvwxz] [-A num] [-B num] [-C[num]] [-e
pattern] [-f file] [--binary-files=value] [--color[=when]] [--
colour[=when]] [--context[=num]] [--label] [--line-buffered] [--null]
[pattern] [file ...]

DESCRIPTION
 The grep utility searches any given input files, selecting lines that
match one or more patterns. By default, a pattern matches an input line
if the regular expression (RE) in the pattern matches the input line
without its trailing newline. An empty expression matches every line.
Each input line that matches at least one of the patterns is written to
the standard output.

 grep is used for simple patterns and basic regular expressions (BREs);
egrep can handle extended regular expressions (EREs). See re_format(7)
for more information on regular expressions. fgrep is quicker than both
grep and egrep, but can only handle fixed patterns (i.e., it does not
interpret regular expressions). Patterns may consist of one or more
lines, allowing any of the pattern lines to match a portion of the
input.

 The following options are available:
 -A num, --after-context=num
 Print num lines of trailing context after each match. See also the
-B and -C options.

 -a, --text
 Treat all files as ASCII text. Normally grep will simply print
“Binary file ... matches” if files contain binary characters. Use of
this option forces grep to output lines matching the specified pattern.

 -B num, --before-context=num
 Print num lines of leading context before each match. See also the
-A and -C options.

 -b, --byte-offset
 The offset in bytes of a matched pattern is displayed in front of
the respective matched line.

 -C[num], --context[=num]
 Print num lines of leading and trailing context surrounding each
match. The default value of num is “2” and is equivalent to “-A 2 -B 2”.
Note: no whitespace may be given between the option and its argument.

 -c, --count
 Only a count of selected lines is written to standard output.
 --colour=[when], --color=[when]
 Mark up the matching text with the expression stored in the
GREP_COLOR environment variable. The possible values of when are
“never”, “always” and “auto”.

 -D action, --devices=action
 Specify the demanded action for devices, FIFOs and sockets. The
default action is “read”, which means, that they are read as if they
were normal files. If the action is set to “skip”, devices are silently
skipped.

 -d action, --directories=action
 Specify the demanded action for directories. It is “read” by
default, which means that the directories are read in the same manner as
normal files. Other possible values are “skip” to silently ignore the
directories, and “recurse” to read them recursively, which has the same
effect as the -R and -r option.

 -E, --extended-regexp
 Interpret pattern as an extended regular expression (i.e., force
grep to behave as egrep).

 -e pattern, --regexp=pattern
 Specify a pattern used during the search of the input: an input
line is selected if it matches any of the specified patterns. This
option is most useful when multiple -e options are used to specify
multiple patterns, or when a pattern begins with a dash (‘-’).

 --exclude pattern
 If specified, it excludes files matching the given filename pattern
from the search. Note that --exclude and --include patterns are
processed in the order given. If a name matches multiple patterns, the
latest matching rule wins. If no --include pattern is specified, all
files are searched that are not excluded. Patterns are matched to the
full path specified, not only to the filename component.

 --exclude-dir pattern
 If -R is specified, it excludes directories matching the given
filename pattern from the search. Note that --exclude-dir and --include-
dir patterns are processed in the order given. If a name matches
multiple patterns, the latest matching rule wins. If no --include-dir
pattern is specified, all directories are searched that are not
excluded.

 -F, --fixed-strings
 Interpret pattern as a set of fixed strings (i.e., force grep to
behave as fgrep).

 -f file, --file=file
 Read one or more newline separated patterns from file. Empty
pattern lines match every input line. Newlines are not considered part
of a pattern. If file is empty, nothing is matched.

 -G, --basic-regexp
 Interpret pattern as a basic regular expression (i.e., force grep
to behave as traditional grep).

 -H Always print filename headers with output lines.
 -h, --no-filename
 Never print filename headers (i.e., filenames) with output lines.
 --help Print a brief help message.

3/8

 -I Ignore binary files. This option is equivalent to the “--binary-
file=without-match” option.

 -i, --ignore-case
 Perform case insensitive matching. By default, grep is case
sensitive.

 --include pattern
 If specified, only files matching the given filename pattern are
searched. Note that --include and --exclude patterns are processed in
the order given. If a name matches multiple patterns, the latest
matching rule wins. Patterns are matched to the full path specified, not
only to the filename component.

 --include-dir pattern
 If -R is specified, only directories matching the given filename
pattern are searched. Note that --include-dir and --exclude-dir patterns
are processed in the order given. If a name matches multiple patterns,
the latest matching rule wins.

 -L, --files-without-match
 Only the names of files not containing selected lines are written
to standard output. Pathnames are listed once per file searched. If the
standard input is searched, the string “(standard input)” is written
unless a --label is specified.

 -l, --files-with-matches
 Only the names of files containing selected lines are written to
standard output. grep will only search a file until a match has been
found, making searches potentially less expensive. Pathnames are listed
once per file searched. If the standard input is searched, the string
“(standard input)” is written unless a --label is specified.

 --label
 Label to use in place of “(standard input)” for a file name where a
file name would normally be printed. This option applies to -H, -L, and
-l.

 --mmap Use mmap(2) instead of read(2) to read input, which can result
in better performance under some circumstances but can cause undefined
behaviour.

 -m num, --max-count=num
 Stop reading the file after num matches.
 -n, --line-number
 Each output line is preceded by its relative line number in the
file, starting at line 1. The line number counter is reset for each file
processed. This option is ignored if -c, -L, -l, or -q is specified.

 --null Prints a zero-byte after the file name.
 -O If -R is specified, follow symbolic links only if they were
explicitly listed on the command line. The default is not to follow
symbolic links.

 -o, --only-matching
 Prints only the matching part of the lines.
 -p If -R is specified, no symbolic links are followed. This is the
default.

 -q, --quiet, --silent
 Quiet mode: suppress normal output. grep will only search a file
until a match has been found, making searches potentially less
expensive.

 -R, -r, --recursive
 Recursively search subdirectories listed. (i.e., force grep to
behave as rgrep).

 -S If -R is specified, all symbolic links are followed. The default
is not to follow symbolic links.

 -s, --no-messages
 Silent mode. Nonexistent and unreadable files are ignored (i.e.,
their error messages are suppressed).

 -U, --binary
 Search binary files, but do not attempt to print them.
 -u This option has no effect and is provided only for compatibility
with GNU grep.

 -V, --version
 Display version information and exit.
 -v, --invert-match
 Selected lines are those not matching any of the specified
patterns.

 -w, --word-regexp
 The expression is searched for as a word (as if surrounded by
‘[[:<:]]’ and ‘[[:>:]]’; see re_format(7)).

 -x, --line-regexp
 Only input lines selected against an entire fixed string or regular
expression are considered to be matching lines.

 -y Equivalent to -i. Obsoleted.
 -z, --null-data
 Treat input and output data as sequences of lines terminated by a
zero-byte instead of a newline.

 --binary-files=value
 Controls searching and printing of binary files. Options are:
 binary (default) Search binary files but do not print them.
 without-match Do not search binary files.
 text Treat all files as text.
 --line-buffered
 Force output to be line buffered. By default, output is line
buffered when standard output is a terminal and block buffered
otherwise.

 If no file arguments are specified, the standard input is used.
Additionally, “-” may be used in place of a file name, anywhere that a
file name is accepted, to read from standard input. This includes both -
f and file arguments.

EXIT STATUS
 The grep utility exits with one of the following values:
 0 One or more lines were selected.
 1 No lines were selected.
 >1 An error occurred.
EXAMPLES
 - Find all occurrences of the pattern ‘patricia’ in a file:
 $ grep 'patricia' myfile
 - Same as above but looking only for complete words:
 $ grep -w 'patricia' myfile
 - Count occurrences of the exact pattern ‘FOO’ :
 $ grep -c FOO myfile
 - Same as above but ignoring case:
 $ grep -c -i FOO myfile
 - Find all occurrences of the pattern ‘.Pp’ at the beginning of a
line:

 $ grep '^\.Pp' myfile
 The apostrophes ensure the entire expression is evaluated by grep
instead of by the user's shell. The caret ‘^’ matches the null string at
the beginning of a line, and the ‘\’ escapes the ‘.’, which would
otherwise match any character.

 - Find all lines in a file which do not contain the words ‘foo’ or
‘bar’:

 $ grep -v -e 'foo' -e 'bar' myfile
 - Peruse the file ‘calendar’ looking for either 19, 20, or 25 using
extended regular expressions:

 $ egrep '19|20|25' calendar
 - Show matching lines and the name of the ‘*.h’ files which contain
the pattern ‘FIXME’. Do the search recursively from the /usr/src/sys/arm
directory

 $ grep -H -R FIXME --include=*.h /usr/src/sys/arm/
 - Same as above but show only the name of the matching file:
 $ grep -l -R FIXME --include=*.h /usr/src/sys/arm/
 - Show lines containing the text ‘foo’. The matching part of the
output is colored and every line is prefixed with the line number and
the offset in the file for those lines that matched.

 $ grep -b --colour -n foo myfile
 - Show lines that match the extended regular expression patterns read
from the standard input:

 $ echo -e 'Free\nBSD\nAll.*reserved' | grep -E -f - myfile

 - Show lines from the output of the pciconf(8) command matching the
specified extended regular expression along with three lines of leading
context and one line of trailing context:

 $ pciconf -lv | grep -B3 -A1 -E 'class.*=.*storage'
 - Suppress any output and use the exit status to show an appropriate
message:

 $ grep -q foo myfile && echo File matches
SEE ALSO
 ed(1), ex(1), sed(1), zgrep(1), re_format(7)
STANDARDS
 The grep utility is compliant with the IEEE Std 1003.1-2008 (“POSIX.1”)
specification.

 The flags [-AaBbCDdGHhILmoPRSUVw] are extensions to that specification,
and the behaviour of the -f flag when used with an empty pattern file is
left undefined.

 All long options are provided for compatibility with GNU versions of
this utility.

 Historic versions of the grep utility also supported the flags [-ruy].
This implementation supports those options; however, their use is
strongly discouraged.

HISTORY
 The grep command first appeared in Version 6 AT&T UNIX.
BSD
================ GNU ================
NAME
 grep, egrep, fgrep, rgrep - print lines that match patterns
SYNOPSIS
 grep [OPTION...] PATTERNS [FILE...]
 grep [OPTION...] -e PATTERNS ... [FILE...]
 grep [OPTION...] -f PATTERN_FILE ... [FILE...]
DESCRIPTION
 grep searches for PATTERNS in each FILE. PATTERNS is one or more
patterns separated by newline characters, and grep prints each line that
matches a pattern. Typically PATTERNS should be quoted when grep is used
in a shell command.

 A FILE of “-” stands for standard input. If no FILE is given,
recursive searches examine the working directory, and nonrecursive
searches read standard input.

 Debian also includes the variant programs egrep, fgrep and rgrep.
These programs are the same as grep -E, grep -F, and grep -r,
respectively. These variants are deprecated upstream, but Debian
provides for backward compatibility. For portability reasons, it is
recommended to avoid the variant programs, and use grep with the related
option instead.

OPTIONS
 Generic Program Information
 --help Output a usage message and exit.
 -V, --version
 Output the version number of grep and exit.
 Pattern Syntax
 -E, --extended-regexp
 Interpret PATTERNS as extended regular expressions (EREs, see
below).

 -F, --fixed-strings
 Interpret PATTERNS as fixed strings, not regular expressions.
 -G, --basic-regexp
 Interpret PATTERNS as basic regular expressions (BREs, see below).
This is the default.

 -P, --perl-regexp
 Interpret PATTERNS as Perl-compatible regular expressions (PCREs).
This option is experimental when combined with the -z (--null-data)
option, and grep -P may warn of unimplemented features.

 Matching Control
 -e PATTERNS, --regexp=PATTERNS
 Use PATTERNS as the patterns. If this option is used multiple times
or is combined with the -f (--file) option, search for all patterns
given. This option can be used to protect a pattern beginning with “-”.

 -f FILE, --file=FILE
 Obtain patterns from FILE, one per line. If this option is used
multiple times or is combined with the -e (--regexp) option, search for
all patterns given. The empty file contains zero patterns, and therefore
matches nothing.

 -i, --ignore-case
 Ignore case distinctions in patterns and input data, so that
characters that differ only in case match each other.

 --no-ignore-case
 Do not ignore case distinctions in patterns and input data. This is
the default. This option is useful for passing to shell scripts that
already use -i, to cancel its effects because the two options override
each other.

 -v, --invert-match
 Invert the sense of matching, to select non-matching lines.
 -w, --word-regexp
 Select only those lines containing matches that form whole words.
The test is that the matching substring must either be at the beginning
of the line, or preceded by a non-word constituent character. Similarly,
it must be either at the end of the line or followed by a non-word
constituent character. Word-constituent characters are letters, digits,
and the underscore. This option has no effect if -x is also specified.

 -x, --line-regexp
 Select only those matches that exactly match the whole line. For a
regular expression pattern, this is like parenthesizing the pattern and
then surrounding it with ^ and $.

 General Output Control
 -c, --count
 Suppress normal output; instead print a count of matching lines for
each input file. With the -v, --invert-match option (see above), count
non-matching lines.

 --color[=WHEN], --colour[=WHEN]
 Surround the matched (non-empty) strings, matching lines, context
lines, file names, line numbers, byte offsets, and separators (for
fields and groups of context lines) with escape sequences to display
them in color on the terminal. The colors are defined by the environment
variable GREP_COLORS. WHEN is never, always, or auto.

 -L, --files-without-match
 Suppress normal output; instead print the name of each input file
from which no output would normally have been printed.

 -l, --files-with-matches
 Suppress normal output; instead print the name of each input file
from which output would normally have been printed. Scanning each input
file stops upon first match.

 -m NUM, --max-count=NUM
 Stop reading a file after NUM matching lines. If NUM is zero, grep
stops right away without reading input. A NUM of -1 is treated as
infinity and grep does not stop; this is the default. If the input is
standard input from a regular file, and NUM matching lines are output,
grep ensures that the standard input is positioned to just after the
last matching line before exiting, regardless of the presence of
trailing context lines. This enables a calling process to resume a
search. When grep stops after NUM matching lines, it outputs any
trailing context lines. When the -c or --count option is also used, grep
does not output a count greater than NUM. When the -v or --invert-match
option is also used, grep stops after outputting NUM non-matching lines.

 -o, --only-matching
 Print only the matched (non-empty) parts of a matching line, with
each such part on a separate output line.

 -q, --quiet, --silent
 Quiet; do not write anything to standard output. Exit immediately
with zero status if any match is found, even if an error was detected.
Also see the -s or --no-messages option.

 -s, --no-messages
 Suppress error messages about nonexistent or unreadable files.

4/8

 Output Line Prefix Control
 -b, --byte-offset
 Print the 0-based byte offset within the input file before each
line of output. If -o (--only-matching) is specified, print the offset
of the matching part itself.

 -H, --with-filename
 Print the file name for each match. This is the default when there
is more than one file to search. This is a GNU extension.

 -h, --no-filename
 Suppress the prefixing of file names on output. This is the default
when there is only one file (or only standard input) to search.

 --label=LABEL
 Display input actually coming from standard input as input coming
from file LABEL. This can be useful for commands that transform a file's
contents before searching, e.g., gzip -cd foo.gz | grep --label=foo -H
'some pattern'. See also the -H option.

 -n, --line-number
 Prefix each line of output with the 1-based line number within its
input file.

 -T, --initial-tab
 Make sure that the first character of actual line content lies on a
tab stop, so that the alignment of tabs looks normal. This is useful
with options that prefix their output to the actual content: -H,-n, and
-b. In order to improve the probability that lines from a single file
will all start at the same column, this also causes the line number and
byte offset (if present) to be printed in a minimum size field width.

 -Z, --null
 Output a zero byte (the ASCII NUL character) instead of the
character that normally follows a file name. For example, grep -lZ
outputs a zero byte after each file name instead of the usual newline.
This option makes the output unambiguous, even in the presence of file
names containing unusual characters like newlines. This option can be
used with commands like find -print0, perl -0, sort -z, and xargs -0 to
process arbitrary file names, even those that contain newline
characters.

 Context Line Control
 -A NUM, --after-context=NUM
 Print NUM lines of trailing context after matching lines. Places a
line containing a group separator (--) between contiguous groups of
matches. With the -o or --only-matching option, this has no effect and a
warning is given.

 -B NUM, --before-context=NUM
 Print NUM lines of leading context before matching lines. Places a
line containing a group separator (--) between contiguous groups of
matches. With the -o or --only-matching option, this has no effect and a
warning is given.

 -C NUM, -NUM, --context=NUM
 Print NUM lines of output context. Places a line containing a group
separator (--) between contiguous groups of matches. With the -o or --
only-matching option, this has no effect and a warning is given.

 --group-separator=SEP
 When -A, -B, or -C are in use, print SEP instead of -- between
groups of lines.

 --no-group-separator
 When -A, -B, or -C are in use, do not print a separator between
groups of lines.

 File and Directory Selection
 -a, --text
 Process a binary file as if it were text; this is equivalent to the
--binary-files=text option.

 --binary-files=TYPE
 If a file's data or metadata indicate that the file contains binary
data, assume that the file is of type TYPE. Non-text bytes indicate
binary data; these are either output bytes that are improperly encoded
for the current locale, or null input bytes when the -z option is not
given.

 By default, TYPE is binary, and grep suppresses output after null
input binary data is discovered, and suppresses output lines that
contain improperly encoded data. When some output is suppressed, grep
follows any output with a message to standard error saying that a binary
file matches.

 If TYPE is without-match, when grep discovers null input binary
data it assumes that the rest of the file does not match; this is
equivalent to the -I option.

 If TYPE is text, grep processes a binary file as if it were text;
this is equivalent to the -a option.

 When type is binary, grep may treat non-text bytes as line
terminators even without the -z option. This means choosing binary
versus text can affect whether a pattern matches a file. For example,
when type is binary the pattern q$ might match q immediately followed by
a null byte, even though this is not matched when type is text.
Conversely, when type is binary the pattern . (period) might not match a
null byte.

 Warning: The -a option might output binary garbage, which can have
nasty side effects if the output is a terminal and if the terminal
driver interprets some of it as commands. On the other hand, when
reading files whose text encodings are unknown, it can be helpful to use
-a or to set LC_ALL='C' in the environment, in order to find more
matches even if the matches are unsafe for direct display.

 -D ACTION, --devices=ACTION
 If an input file is a device, FIFO or socket, use ACTION to process
it. By default, ACTION is read, which means that devices are read just
as if they were ordinary files. If ACTION is skip, devices are silently
skipped.

 -d ACTION, --directories=ACTION
 If an input file is a directory, use ACTION to process it. By
default, ACTION is read, i.e., read directories just as if they were
ordinary files. If ACTION is skip, silently skip directories. If ACTION
is recurse, read all files under each directory, recursively, following
symbolic links only if they are on the command line. This is equivalent
to the -r option.

 --exclude=GLOB
 Skip any command-line file with a name suffix that matches the
pattern GLOB, using wildcard matching; a name suffix is either the whole
name, or a trailing part that starts with a non-slash character
immediately after a slash (/) in the name. When searching recursively,
skip any subfile whose base name matches GLOB; the base name is the part
after the last slash. A pattern can use *, ?, and [...] as wildcards,
and \ to quote a wildcard or backslash character literally.

 --exclude-from=FILE
 Skip files whose base name matches any of the file-name globs read
from FILE (using wildcard matching as described under --exclude).

 --exclude-dir=GLOB
 Skip any command-line directory with a name suffix that matches the
pattern GLOB. When searching recursively, skip any subdirectory whose
base name matches GLOB. Ignore any redundant trailing slashes in GLOB.

 -I Process a binary file as if it did not contain matching data;
this is equivalent to the --binary-files=without-match option.

 --include=GLOB
 Search only files whose base name matches GLOB (using wildcard
matching as described under --exclude). If contradictory --include and
--exclude options are given, the last matching one wins. If no --include
or --exclude options match, a file is included unless the first such
option is --include.

 -r, --recursive
 Read all files under each directory, recursively, following
symbolic links only if they are on the command line. Note that if no
file operand is given, grep searches the working directory. This is
equivalent to the -d recurse option.

 -R, --dereference-recursive
 Read all files under each directory, recursively. Follow all
symbolic links, unlike -r.

 Other Options
 --line-buffered
 Use line buffering on output. This can cause a performance penalty.
 -U, --binary
 Treat the file(s) as binary. By default, under MS-DOS and MS-
Windows, grep guesses whether a file is text or binary as described for
the --binary-files option. If grep decides the file is a text file, it
strips the CR characters from the original file contents (to make
regular expressions with ^ and $ work correctly). Specifying -U
overrules this guesswork, causing all files to be read and passed to the
matching mechanism verbatim; if the file is a text file with CR/LF pairs
at the end of each line, this will cause some regular expressions to
fail. This option has no effect on platforms other than MS-DOS and MS-
Windows.

 -z, --null-data
 Treat input and output data as sequences of lines, each terminated
by a zero byte (the ASCII NUL character) instead of a newline. Like the
-Z or --null option, this option can be used with commands like sort -z
to process arbitrary file names.

REGULAR EXPRESSIONS
 A regular expression is a pattern that describes a set of strings.
Regular expressions are constructed analogously to arithmetic
expressions, by using various operators to combine smaller expressions.

 grep understands three different versions of regular expression
syntax: “basic” (BRE), “extended” (ERE) and “perl” (PCRE). In GNU grep
there is no difference in available functionality between basic and
extended syntax. In other implementations, basic regular expressions are
less powerful. The following description applies to extended regular
expressions; differences for basic regular expressions are summarized
afterwards. Perl-compatible regular expressions give additional
functionality, and are documented in pcre2syntax(3) and pcre2pattern(3),
but work only if PCRE support is enabled.

 The fundamental building blocks are the regular expressions that match
a single character. Most characters, including all letters and digits,
are regular expressions that match themselves. Any meta-character with
special meaning may be quoted by preceding it with a backslash.

 The period . matches any single character. It is unspecified whether
it matches an encoding error.

 Character Classes and Bracket Expressions
 A bracket expression is a list of characters enclosed by [and]. It
matches any single character in that list. If the first character of the
list is the caret ^ then it matches any character not in the list; it is
unspecified whether it matches an encoding error. For example, the
regular expression [0123456789] matches any single digit.

 Within a bracket expression, a range expression consists of two
characters separated by a hyphen. It matches any single character that
sorts between the two characters, inclusive, using the locale's
collating sequence and character set. For example, in the default C
locale, [a-d] is equivalent to [abcd]. Many locales sort characters in
dictionary order, and in these locales [a-d] is typically not equivalent
to [abcd]; it might be equivalent to [aBbCcDd], for example. To obtain
the traditional interpretation of bracket expressions, you can use the C
locale by setting the LC_ALL environment variable to the value C.

 Finally, certain named classes of characters are predefined within
bracket expressions, as follows. Their names are self explanatory, and
they are [:alnum:], [:alpha:], [:blank:], [:cntrl:], [:digit:],
[:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:], and
[:xdigit:]. For example, [[:alnum:]] means the character class of
numbers and letters in the current locale. In the C locale and ASCII
character set encoding, this is the same as [0-9A-Za-z]. (Note that the
brackets in these class names are part of the symbolic names, and must
be included in addition to the brackets delimiting the bracket
expression.) Most meta-characters lose their special meaning inside
bracket expressions. To include a literal] place it first in the list.
Similarly, to include a literal ^ place it anywhere but first. Finally,
to include a literal - place it last.

 Anchoring
 The caret ^ and the dollar sign $ are meta-characters that
respectively match the empty string at the beginning and end of a line.

 The Backslash Character and Special Expressions
 The symbols \< and \> respectively match the empty string at the
beginning and end of a word. The symbol \b matches the empty string at
the edge of a word, and \B matches the empty string provided it's not at
the edge of a word. The symbol \w is a synonym for [_[:alnum:]] and \W
is a synonym for [^_[:alnum:]].

 Repetition
 A regular expression may be followed by one of several repetition
operators:

 ? The preceding item is optional and matched at most once.
 * The preceding item will be matched zero or more times.
 + The preceding item will be matched one or more times.
 {n} The preceding item is matched exactly n times.
 {n,} The preceding item is matched n or more times.
 {,m} The preceding item is matched at most m times. This is a GNU
extension.

 {n,m} The preceding item is matched at least n times, but not more
than m times.

 Concatenation
 Two regular expressions may be concatenated; the resulting regular
expression matches any string formed by concatenating two substrings
that respectively match the concatenated expressions.

 Alternation
 Two regular expressions may be joined by the infix operator |; the
resulting regular expression matches any string matching either
alternate expression.

 Precedence
 Repetition takes precedence over concatenation, which in turn takes
precedence over alternation. A whole expression may be enclosed in
parentheses to override these precedence rules and form a subexpression.

 Back-references and Subexpressions
 The back-reference \n, where n is a single digit, matches the
substring previously matched by the nth parenthesized subexpression of
the regular expression.

 Basic vs Extended Regular Expressions
 In basic regular expressions the meta-characters ?, +, {, |, (, and)
lose their special meaning; instead use the backslashed versions \?, \+,
\{, \|, \(, and \).

EXIT STATUS
 Normally the exit status is 0 if a line is selected, 1 if no lines
were selected, and 2 if an error occurred. However, if the -q or --quiet
or --silent is used and a line is selected, the exit status is 0 even if
an error occurred.

ENVIRONMENT
 The behavior of grep is affected by the following environment
variables.

 The locale for category LC_foo is specified by examining the three
environment variables LC_ALL, LC_foo, LANG, in that order. The first of
these variables that is set specifies the locale. For example, if LC_ALL
is not set, but LC_MESSAGES is set to pt_BR, then the Brazilian
Portuguese locale is used for the LC_MESSAGES category. The C locale is
used if none of these environment variables are set, if the locale
catalog is not installed, or if grep was not compiled with national
language support (NLS). The shell command locale -a lists locales that
are currently available.

 GREP_COLORS
 Controls how the --color option highlights output. Its value is a
colon-separated list of capabilities that defaults to
ms=01;31:mc=01;31:sl=:cx=:fn=35:ln=32:bn=32:se=36 with the rv and ne
boolean capabilities omitted (i.e., false). Supported capabilities are
as follows.

 sl= SGR substring for whole selected lines (i.e., matching lines
when the -v command-line option is omitted, or non-matching lines when -

5/8

v is specified). If however the boolean rv capability and the -v
command-line option are both specified, it applies to context matching
lines instead. The default is empty (i.e., the terminal's default color
pair).

 cx= SGR substring for whole context lines (i.e., non-matching
lines when the -v command-line option is omitted, or matching lines when
-v is specified). If however the boolean rv capability and the -v
command-line option are both specified, it applies to selected non-
matching lines instead. The default is empty (i.e., the terminal's
default color pair).

 rv Boolean value that reverses (swaps) the meanings of the sl=
and cx= capabilities when the -v command-line option is specified. The
default is false (i.e., the capability is omitted).

 mt=01;31
 SGR substring for matching non-empty text in any matching line
(i.e., a selected line when the -v command-line option is omitted, or a
context line when -v is specified). Setting this is equivalent to
setting both ms= and mc= at once to the same value. The default is a
bold red text foreground over the current line background.

 ms=01;31
 SGR substring for matching non-empty text in a selected line.
(This is only used when the -v command-line option is omitted.) The
effect of the sl= (or cx= if rv) capability remains active when this
kicks in. The default is a bold red text foreground over the current
line background.

 mc=01;31
 SGR substring for matching non-empty text in a context line.
(This is only used when the -v command-line option is specified.) The
effect of the cx= (or sl= if rv) capability remains active when this
kicks in. The default is a bold red text foreground over the current
line background.

 fn=35 SGR substring for file names prefixing any content line. The
default is a magenta text foreground over the terminal's default
background.

 ln=32 SGR substring for line numbers prefixing any content line.
The default is a green text foreground over the terminal's default
background.

 bn=32 SGR substring for byte offsets prefixing any content line.
The default is a green text foreground over the terminal's default
background.

 se=36 SGR substring for separators that are inserted between
selected line fields (:), between context line fields, (-), and between
groups of adjacent lines when nonzero context is specified (--). The
default is a cyan text foreground over the terminal's default
background.

 ne Boolean value that prevents clearing to the end of line using
Erase in Line (EL) to Right (\33[K) each time a colorized item ends.
This is needed on terminals on which EL is not supported. It is
otherwise useful on terminals for which the back_color_erase (bce)
boolean terminfo capability does not apply, when the chosen highlight
colors do not affect the background, or when EL is too slow or causes
too much flicker. The default is false (i.e., the capability is
omitted).

 Note that boolean capabilities have no =... part. They are omitted
(i.e., false) by default and become true when specified.

 See the Select Graphic Rendition (SGR) section in the documentation
of the text terminal that is used for permitted values and their meaning
as character attributes. These substring values are integers in decimal
representation and can be concatenated with semicolons. grep takes care
of assembling the result into a complete SGR sequence (\33[...m). Common
values to concatenate include 1 for bold, 4 for underline, 5 for blink,
7 for inverse, 39 for default foreground color, 30 to 37 for foreground
colors, 90 to 97 for 16-color mode foreground colors, 38;5;0 to 38;5;255
for 88-color and 256-color modes foreground colors, 49 for default
background color, 40 to 47 for background colors, 100 to 107 for 16-
color mode background colors, and 48;5;0 to 48;5;255 for 88-color and
256-color modes background colors.

 LC_ALL, LC_COLLATE, LANG
 These variables specify the locale for the LC_COLLATE category,
which determines the collating sequence used to interpret range
expressions like [a-z].

 LC_ALL, LC_CTYPE, LANG
 These variables specify the locale for the LC_CTYPE category, which
determines the type of characters, e.g., which characters are
whitespace. This category also determines the character encoding, that
is, whether text is encoded in UTF-8, ASCII, or some other encoding. In
the C or POSIX locale, all characters are encoded as a single byte and
every byte is a valid character.

 LC_ALL, LC_MESSAGES, LANG
 These variables specify the locale for the LC_MESSAGES category,
which determines the language that grep uses for messages. The default C
locale uses American English messages.

 POSIXLY_CORRECT
 If set, grep behaves as POSIX requires; otherwise, grep behaves
more like other GNU programs. POSIX requires that options that follow
file names must be treated as file names; by default, such options are
permuted to the front of the operand list and are treated as options.
Also, POSIX requires that unrecognized options be diagnosed as
“illegal”, but since they are not really against the law the default is
to diagnose them as “invalid”. POSIXLY_CORRECT also disables
_N_GNU_nonoption_argv_flags_, described below.

 _N_GNU_nonoption_argv_flags_
 (Here N is grep's numeric process ID.) If the ith character of this
environment variable's value is 1, do not consider the ith operand of
grep to be an option, even if it appears to be one. A shell can put this
variable in the environment for each command it runs, specifying which
operands are the results of file name wildcard expansion and therefore
should not be treated as options. This behavior is available only with
the GNU C library, and only when POSIXLY_CORRECT is not set.

NOTES
 This man page is maintained only fitfully; the full documentation is
often more up-to-date.

COPYRIGHT
 Copyright 1998-2000, 2002, 2005-2022 Free Software Foundation, Inc.
 This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

BUGS
 Reporting Bugs
 Email bug reports to the bug-reporting address bug-grep@gnu.org . An⟨ ⟩
email archive https://lists.gnu.org/mailman/listinfo/bug-grep and a ⟨ ⟩
bug tracker https://debbugs.gnu.org/cgi/pkgreport.cgi?package=grep ⟨ ⟩
are available.

 Known Bugs
 Large repetition counts in the {n,m} construct may cause grep to use
lots of memory. In addition, certain other obscure regular expressions
require exponential time and space, and may cause grep to run out of
memory.

 Back-references are very slow, and may require exponential time.
EXAMPLE
 The following example outputs the location and contents of any line
containing “f” and ending in “.c”, within all files in the current
directory whose names contain “g” and end in “.h”. The -n option outputs
line numbers, the -- argument treats expansions of “*g*.h” starting with
“-” as file names not options, and the empty file /dev/null causes file
names to be output even if only one file name happens to be of the form
“*g*.h”.

 $ grep -n -- 'f.*\.c$' *g*.h /dev/null
 argmatch.h:1:/* definitions and prototypes for argmatch.c
 The only line that matches is line 1 of argmatch.h. Note that the
regular expression syntax used in the pattern differs from the globbing
syntax that the shell uses to match file names.

SEE ALSO
 Regular Manual Pages
 awk(1), cmp(1), diff(1), find(1), perl(1), sed(1), sort(1), xargs(1),
read(2), pcre2(3), pcre2syntax(3), pcre2pattern(3), terminfo(5),
glob(7), regex(7)

 Full Documentation
 A complete manual https://www.gnu.org/software/grep/manual/ is ⟨ ⟩
available. If the info and grep programs are properly installed at your
site, the command

 info grep
 should give you access to the complete manual.
GNU grep 3.8

true
================ suckless ================
NAME
 true — return success
SYNOPSIS
 true
DESCRIPTION
 true returns a status code indicating success.
STANDARDS
 POSIX.1-2013.
sbase
================ BSD ================
NAME
 true — return true value
SYNOPSIS
 true
DESCRIPTION
 The true utility always returns with an exit code of zero.
 Some shells may provide a builtin true command which is identical to
this utility. Consult the builtin(1) manual page.

SEE ALSO
 builtin(1), csh(1), false(1), sh(1)
STANDARDS
 The true utility is expected to be IEEE Std 1003.2 (“POSIX.2”)
compatible.

BSD
================ GNU ================
NAME
 true - do nothing, successfully
SYNOPSIS
 true [ignored command line arguments]
 true OPTION
DESCRIPTION
 Exit with a status code indicating success.
 --help display this help and exit
 --version
 output version information and exit
 NOTE: your shell may have its own version of true, which usually
supersedes the version described here. Please refer to your shell's
documentation for details about the options it supports.

AUTHOR
 Written by Jim Meyering.
REPORTING BUGS
 GNU coreutils online help: <https://www.gnu.org/software/coreutils/>
 Report any translation bugs to <https://translationproject.org/team/>
COPYRIGHT
 Copyright © 2022 Free Software Foundation, Inc. License GPLv3+: GNU
GPL version 3 or later <https://gnu.org/licenses/gpl.html>.

 This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
 Full documentation <https://www.gnu.org/software/coreutils/true>
 or available locally via: info '(coreutils) true invocation'
GNU coreutils 9.1
================ POSIX ================
PROLOG
...
NAME
 true — return true value
SYNOPSIS
 true
DESCRIPTION
 The true utility shall return with exit code zero.
OPTIONS
 None.
OPERANDS
 None.
...
EXIT STATUS
 Zero.
CONSEQUENCES OF ERRORS
 None.
 The following sections are informative.
APPLICATION USAGE
 This utility is typically used in shell scripts, as shown in the
EXAMPLES section. The special built-in utility : is sometimes more
efficient than true.

EXAMPLES
 This command is executed forever:
 while true
 do
 command
 done
RATIONALE
 The true utility has been retained in this volume of POSIX.1‐2017,
even though the shell special built-in : provides similar functionality,
because true is widely used in historical scripts and is less cryptic to
novice script readers.

FUTURE DIRECTIONS
 None.
SEE ALSO
 Section 2.9, Shell Commands, false
COPYRIGHT
...

busybox (digest)
NAME
 BusyBox - The Swiss Army Knife of Embedded Linux
SYNTAX
 busybox <applet> [arguments...] # or
 <applet> [arguments...] # if symlinked
DESCRIPTION
 BusyBox combines tiny versions of many common UNIX utilities into a
single small executable. It provides minimalist replacements for most of
the utilities you usually find in GNU coreutils, util-linux, etc. The
utilities in BusyBox generally have fewer options than their full-
featured GNU cousins; however, the options that are included provide the
expected functionality and behave very much like their GNU counterparts.

 BusyBox has been written with size-optimization and limited resources
in mind. It is also extremely modular so you can easily include or
exclude commands (or features) at compile time. This makes it easy to
customize your embedded systems. To create a working system, just add
/dev, /etc, and a Linux kernel. BusyBox provides a fairly complete POSIX
environment for any small or embedded system.

...
COMMAND DESCRIPTIONS
...

6/8

 cat cat [-nbvteA] [FILE]...
 Print FILEs to stdout
 -n Number output lines
 -b Number nonempty lines
 -v Show nonprinting characters as ^x or M-x
 -t ...and tabs as ^I
 -e ...and end lines with $
 -A Same as -vte
...
 chmod
 chmod [-Rcvf] MODE[,MODE]... FILE...
 MODE is octal number (bit pattern sstrwxrwxrwx) or [ugoa]{+|-|=}
[rwxXst]

 -R Recurse
 -c List changed files
 -v Verbose
 -f Hide errors
...
 cmp cmp [-ls] [-n NUM] FILE1 [FILE2 [SKIP1 [SKIP2]]]
 Compare FILE1 with FILE2 (or stdin)
 -l Write the byte numbers (decimal) and values (octal)
 for all differing bytes
 -s Quiet
 -n NUM Compare at most NUM bytes
 cp cp [-arPLHpfinlsTu] SOURCE DEST or: cp [-arPLHpfinlsu] SOURCE...
{ -t DIRECTORY | DIRECTORY }

 Copy SOURCEs to DEST
 -a Same as -dpR
 -R,-r Recurse
 -d,-P Preserve symlinks (default if -R)
 -L Follow all symlinks
 -H Follow symlinks on command line
 -p Preserve file attributes if possible
 -f Overwrite
 -i Prompt before overwrite
 -n Don't overwrite
 -l,-s Create (sym)links
 -T Refuse to copy if DEST is a directory
 -t DIR Copy all SOURCEs into DIR
 -u Copy only newer files
...
 date
 date [OPTIONS] [+FMT] [[-s] TIME]
 Display time (using +FMT), or set time
 -u Work in UTC (don't convert to local time)
 [-s] TIME Set time to TIME
 -d TIME Display TIME, not 'now'
 -D FMT FMT (strptime format) for -s/-d TIME conversion
 -r FILE Display last modification time of FILE
 -R Output RFC-2822 date
 -I[SPEC] Output ISO-8601 date
 SPEC=date (default), hours, minutes, seconds or ns
 Recognized TIME formats:
 @seconds_since_1970
 hh:mm[:ss]
 [YYYY.]MM.DD-hh:mm[:ss]
 YYYY-MM-DD hh:mm[:ss]
 [[[[[YY]YY]MM]DD]hh]mm[.ss]
 'date TIME' form accepts MMDDhhmm[[YY]YY][.ss] instead
...
 dd dd [if=FILE] [of=FILE] [ibs=N obs=N/bs=N] [count=N] [skip=N]
[seek=N] [conv=notrunc|noerror|sync|fsync] [iflag=skip_bytes|
count_bytes|fullblock|direct] [oflag=seek_bytes|append|direct]

 Copy a file with converting and formatting
 if=FILE Read from FILE instead of stdin
 of=FILE Write to FILE instead of stdout
 bs=N Read and write N bytes at a time
 ibs=N Read N bytes at a time
 obs=N Write N bytes at a time
 count=N Copy only N input blocks
 skip=N Skip N input blocks
 seek=N Skip N output blocks
 conv=notrunc Don't truncate output file
 conv=noerror Continue after read errors
 conv=sync Pad blocks with zeros
 conv=fsync Physically write data out before finishing
 conv=swab Swap every pair of bytes
 iflag=skip_bytes skip=N is in bytes
 iflag=count_bytes count=N is in bytes
 oflag=seek_bytes seek=N is in bytes
 iflag=direct O_DIRECT input
 oflag=direct O_DIRECT output
 iflag=fullblock Read full blocks
 oflag=append Open output in append mode
 status=noxfer Suppress rate output
 status=none Suppress all output
 N may be suffixed by c (1), w (2), b (512), kB (1000), k (1024), MB,
M, GB, G

 ...
 diff
 diff [-abBdiNqrTstw] [-L LABEL] [-S FILE] [-U LINES] FILE1 FILE2
 Compare files line by line and output the differences between them.
This implementation supports unified diffs only.

 -a Treat all files as text
 -b Ignore changes in the amount of whitespace
 -B Ignore changes whose lines are all blank
 -d Try hard to find a smaller set of changes
 -i Ignore case differences
 -L Use LABEL instead of the filename in the unified header
 -N Treat absent files as empty
 -q Output only whether files differ
 -r Recurse
 -S Start with FILE when comparing directories
 -T Make tabs line up by prefixing a tab when necessary
 -s Report when two files are the same
 -t Expand tabs to spaces in output
 -U Output LINES lines of context
 -w Ignore all whitespace
 ...
 df df [-PkmhTai] [-B SIZE] [-t TYPE] [FILESYSTEM]...
 Print filesystem usage statistics
 -P POSIX output format
 -k 1024-byte blocks (default)
 -m 1M-byte blocks
 -h Human readable (e.g. 1K 243M 2G)
 -T Print filesystem type
 -t TYPE Print only mounts of this type
 -a Show all filesystems
 -i Inodes
 -B SIZE Blocksize
...
 du du [-aHLdclsxhmk] [FILE]...
 Summarize disk space used for FILEs (or directories)
 -a Show file sizes too
 -b Apparent size (including holes)
 -L Follow all symlinks
 -H Follow symlinks on command line
 -d N Limit output to directories (and files with -a) of depth <
N

 -c Show grand total
 -l Count sizes many times if hard linked
 -s Display only a total for each argument

 -x Skip directories on different filesystems
 -h Sizes in human readable format (e.g., 1K 243M 2G)
 -m Sizes in megabytes
 -k Sizes in kilobytes (default)
 ...
 echo
 echo [-neE] [ARG]...
 Print ARGs to stdout
 -n No trailing newline
 -e Interpret backslash escapes (\t=tab etc)
 -E Don't interpret backslash escapes (default)
 ...
 find
 find [-HL] [PATH]... [OPTIONS] [ACTIONS]
 Search for files and perform actions on them. First failed action
stops processing of current file. Defaults: PATH is current directory,
action is '-print'

 -L,-follow Follow symlinks
 -H ...on command line only
 -xdev Don't descend directories on other filesystems
 -maxdepth N Descend at most N levels. -maxdepth 0 applies
 actions to command line arguments only
 -mindepth N Don't act on first N levels
 -depth Act on directory *after* traversing it
 Actions:
 (ACTIONS) Group actions for -o / -a
 ! ACT Invert ACT's success/failure
 ACT1 [-a] ACT2 If ACT1 fails, stop, else do ACT2
 ACT1 -o ACT2 If ACT1 succeeds, stop, else do ACT2
 Note: -a has higher priority than -o
 -name PATTERN Match file name (w/o directory name) to PATTERN
 -iname PATTERN Case insensitive -name
 -path PATTERN Match path to PATTERN
 -ipath PATTERN Case insensitive -path
 -regex PATTERN Match path to regex PATTERN
 -type X File type is X (one of: f,d,l,b,c,s,p)
 -executable File is executable
 -perm MASK At least one mask bit (+MASK), all bits (-MASK),
 or exactly MASK bits are set in file's mode
 -mtime DAYS mtime is greater than (+N), less than (-N),
 or exactly N days in the past
 -atime DAYS atime +N/-N/N days in the past
 -ctime DAYS ctime +N/-N/N days in the past
 -mmin MINS mtime is greater than (+N), less than (-N),
 or exactly N minutes in the past
 -amin MINS atime +N/-N/N minutes in the past
 -cmin MINS ctime +N/-N/N minutes in the past
 -newer FILE mtime is more recent than FILE's
 -inum N File has inode number N
 -samefile FILE File is same as FILE
 -user NAME/ID File is owned by given user
 -group NAME/ID File is owned by given group
 -size N[bck] File size is N (c:bytes,k:kbytes,b:512
bytes(def.))

 +/-N: file size is bigger/smaller than N
 -links N Number of links is greater than (+N), less than (-
N),

 or exactly N
 -empty Match empty file/directory
 -prune If current file is directory, don't descend into it
 If none of the following actions is specified, -print is assumed
 -print Print file name
 -print0 Print file name, NUL terminated
 -exec CMD ARG ; Run CMD with all instances of {} replaced by
 file name. Fails if CMD exits with nonzero
 -exec CMD ARG + Run CMD with {} replaced by list of file names
 -quit Exit
 ...
 true; do case "$1" in -a) echo A; shift;; -b|--bb) echo "B:'$2'";
shift 2;; -c) case "$2" in "") echo C; shift 2;; *) echo
"C:'$2'"; shift 2;; esac;; --) shift; break;; *) echo Error;
exit 1;; esac done

...
 grep
 grep [-HhnlLoqvsrRiwFEz] [-m N] [-A|B|C N] { PATTERN | -e PATTERN...
| -f FILE... } [FILE]...

 Search for PATTERN in FILEs (or stdin)
 -H Add 'filename:' prefix
 -h Do not add 'filename:' prefix
 -n Add 'line_no:' prefix
 -l Show only names of files that match
 -L Show only names of files that don't match
 -c Show only count of matching lines
 -o Show only the matching part of line
 -q Quiet. Return 0 if PATTERN is found, 1 otherwise
 -v Select non-matching lines
 -s Suppress open and read errors
 -r Recurse
 -R Recurse and dereference symlinks
 -i Ignore case
 -w Match whole words only
 -x Match whole lines only
 -F PATTERN is a literal (not regexp)
 -E PATTERN is an extended regexp
 -z NUL terminated input
 -m N Match up to N times per file
 -A N Print N lines of trailing context
 -B N Print N lines of leading context
 -C N Same as '-A N -B N'
 -e PTRN Pattern to match
 -f FILE Read pattern from file
 ...
 halt
 halt [-d DELAY] [-nfw]
 Halt the system
 -d SEC Delay interval
 -n Do not sync
 -f Force (don't go through init)
 -w Only write a wtmp record
 head
 head [OPTIONS] [FILE]...
 Print first 10 lines of FILEs (or stdin). With more than one FILE,
precede each with a filename header.

 -n N[bkm] Print first N lines
 -n -N[bkm] Print all except N last lines
 -c [-]N[bkm] Print first N bytes
 (b:*512 k:*1024 m:*1024^2)
 -q Never print headers
 -v Always print headers
 hexdump
 hexdump [-bcdoxCv] [-e FMT] [-f FMT_FILE] [-n LEN] [-s OFS]
[FILE]...

 Display FILEs (or stdin) in a user specified format
 -b 1-byte octal display
 -c 1-byte character display
 -d 2-byte decimal display
 -o 2-byte octal display
 -x 2-byte hex display
 -C hex+ASCII 16 bytes per line
 -v Show all (no dup folding)
 -e FORMAT_STR Example: '16/1 "%02x|""\n"'
 -f FORMAT_FILE

7/8

 -n LENGTH Show only first LENGTH bytes
 -s OFFSET Skip OFFSET bytes
...
 ifconfig
 ifconfig [-a] [IFACE] [ADDRESS]
 Configure a network interface
 [add ADDRESS[/PREFIXLEN]]
 [del ADDRESS[/PREFIXLEN]]
 [[-]broadcast [ADDRESS]] [[-]pointopoint [ADDRESS]]
 [netmask ADDRESS] [dstaddr ADDRESS]
 [outfill NN] [keepalive NN]
 [hw ether|infiniband ADDRESS] [metric NN] [mtu NN]
 [[-]trailers] [[-]arp] [[-]allmulti]
 [multicast] [[-]promisc] [txqueuelen NN] [[-]dynamic]
 [mem_start NN] [io_addr NN] [irq NN]
 [up|down] ...
...
 kill
 kill [-l] [-SIG] PID...
 Send a signal (default: TERM) to given PIDs
 -l List all signal names and numbers
...
 less
 less [-EFIMmNSRh~] [FILE]...
 View FILE (or stdin) one screenful at a time
 -E Quit once the end of a file is reached
 -F Quit if entire file fits on first screen
 -I Ignore case in all searches
 -M,-m Display status line with line numbers
 and percentage through the file
 -N Prefix line number to each line
 -S Truncate long lines
 -R Remove color escape codes in input
 -~ Suppress ~s displayed past EOF
...
 ls ls [-1AaCxdLHRFplinshrSXvctu] [-w WIDTH] [FILE]...
 List directory contents
 -1 One column output
 -a Include names starting with .
 -A Like -a, but exclude . and ..
 -x List by lines
 -d List directory names, not contents
 -L Follow symlinks
 -H Follow symlinks on command line
 -R Recurse
 -p Append / to directory names
 -F Append indicator (one of */=@|) to names
 -l Long format
 -i List inode numbers
 -n List numeric UIDs and GIDs instead of names
 -s List allocated blocks
 -lc List ctime
 -lu List atime
 --full-time List full date/time
 -h Human readable sizes (1K 243M 2G)
 --group-directories-first
 -S Sort by size
 -X Sort by extension
 -v Sort by version
 -t Sort by mtime
 -tc Sort by ctime
 -tu Sort by atime
 -r Reverse sort order
 -w N Format N columns wide
 --color[={always,never,auto}]
...
 mkdir
 mkdir [-m MODE] [-p] DIRECTORY...
 Create DIRECTORY
 -m MODE Mode
 -p No error if exists; make parent directories as needed
...
 mv mv [-finT] SOURCE DEST or: mv [-fin] SOURCE... { -t DIRECTORY |
DIRECTORY }

 Rename SOURCE to DEST, or move SOURCEs to DIRECTORY
 -f Don't prompt before overwriting
 -i Interactive, prompt before overwrite
 -n Don't overwrite an existing file
 -T Refuse to move if DEST is a directory
 -t DIR Move all SOURCEs into DIR
...
 patch
 patch [-RNE] [-p N] [-i DIFF] [ORIGFILE [PATCHFILE]]
 -p N Strip N leading components from file names
 -i DIFF Read DIFF instead of stdin
 -R Reverse patch
 -N Ignore already applied patches
 -E Remove output files if they become empty
 --dry-run Don't actually change files
...
 ping
 ping [OPTIONS] HOST
 Send ICMP ECHO_REQUESTs to HOST
 -4,-6 Force IP or IPv6 name resolution
 -c CNT Send only CNT pings
 -s SIZE Send SIZE data bytes in packets (default 56)
 -i SECS Interval
 -A Ping as soon as reply is received
 -t TTL Set TTL
 -I IFACE/IP Source interface or IP address
 -W SEC Seconds to wait for the first response (default 10)
 (after all -c CNT packets are sent)
 -w SEC Seconds until ping exits (default:infinite)
 (can exit earlier with -c CNT)
 -q Quiet, only display output at start/finish
 -p HEXBYTE Payload pattern
...
 printf
 printf FORMAT [ARG]...
 Format and print ARG(s) according to FORMAT (a-la C printf)
...
 rm rm [-irf] FILE...
 Remove (unlink) FILEs
 -i Always prompt before removing
 -f Never prompt
 -R,-r Recurse
...
 sed sed [-i[SFX]] [-nrE] [-f FILE]... [-e CMD]... [FILE]... or: sed [-
i[SFX]] [-nrE] CMD [FILE]...

 -e CMD Add CMD to sed commands to be executed
 -f FILE Add FILE contents to sed commands to be executed
 -i[SFX] Edit files in-place (otherwise write to stdout)
 Optionally back files up, appending SFX
 -n Suppress automatic printing of pattern space
 -r,-E Use extended regex syntax
 If no -e or -f, the first non-option argument is the sed command
string. Remaining arguments are input files (stdin if none).

...
 shuf
 shuf [-n NUM] [-o FILE] [-z] [FILE | -e [ARG...] | -i L-H]
 Randomly permute lines
 -n NUM Output at most NUM lines

 -o FILE Write to FILE, not standard output
 -z NUL terminated output
 -e Treat ARGs as lines
 -i L-H Treat numbers L-H as lines
...
 sleep
 sleep [N]...
 Pause for a time equal to the total of the args given, where each
arg can have an optional suffix of (s)econds, (m)inutes, (h)ours, or
(d)ays

 sort
 sort [-nrugMcszbdfiokt] [-o FILE] [-k START[.OFS][OPTS][,END[.OFS]
[OPTS]] [-t CHAR] [FILE]...

 Sort lines of text
 -o FILE Output to FILE
 -c Check whether input is sorted
 -b Ignore leading blanks
 -f Ignore case
 -i Ignore unprintable characters
 -d Dictionary order (blank or alphanumeric only)
 -n Sort numbers
 -g General numerical sort
 -M Sort month
 -V Sort version
 -t CHAR Field separator
 -k N[,M] Sort by Nth field
 -r Reverse sort order
 -s Stable (don't sort ties alphabetically)
 -u Suppress duplicate lines
 -z NUL terminated input and output
 ...
 tail
 tail [OPTIONS] [FILE]...
 ...
 tar tar c|x|t [-ZzJjahmvokO] [-f TARFILE] [-C DIR] [FILE]...
 Create, extract, or list files from a tar file
 c Create
 x Extract
 t List
 -f FILE Name of TARFILE ('-' for stdin/out)
 -C DIR Change to DIR before operation
 -v Verbose
 -O Extract to stdout
 -m Don't restore mtime
 -o Don't restore user:group
 -k Don't replace existing files
 -Z (De)compress using compress
 -z (De)compress using gzip
 -J (De)compress using xz
 -j (De)compress using bzip2
 --lzma (De)compress using lzma
 -a (De)compress based on extension
 -h Follow symlinks
 --overwrite Replace existing files
 --strip-components NUM NUM of leading components to strip
 --no-recursion Don't descend in directories
 --numeric-owner Use numeric user:group
 --no-same-permissions Don't restore access permissions
 --to-command COMMAND Pipe files to COMMAND
...
 tr tr [-cds] STRING1 [STRING2]
 Translate, squeeze, or delete characters from stdin, writing to
stdout

 -c Take complement of STRING1
 -d Delete input characters coded STRING1
 -s Squeeze multiple output characters of STRING2 into one
character

...
 uniq
 uniq [-cduiz] [-f,s,w N] [FILE [OUTFILE]]
 Discard duplicate lines
 -c Prefix lines by the number of occurrences
 -d Only print duplicate lines
 -u Only print unique lines
 -i Ignore case
 -z NUL terminated output
 -f N Skip first N fields
 -s N Skip first N chars (after any skipped fields)
 -w N Compare N characters in line
...
 vi vi [-c CMD] [-R] [-H] [FILE]...
 Edit FILE
 -c CMD Initial command to run ($EXINIT and ~/.exrc also
available)

 -R Read-only
 -H List available features
...
 wc wc [-cmlwL] [FILE]...
 Count lines, words, and bytes for FILEs (or stdin)
 -c Count bytes
 -m Count characters
 -l Count newlines
 -w Count words
 -L Print longest line length
 wget
 wget [-cqS] [--spider] [-O FILE] [-o LOGFILE] [--header STR] [--
post-data STR | --post-file FILE] [-Y on/off] [--no-check-certificate]
[-P DIR] [-U AGENT] URL...

 Retrieve files via HTTP or FTP
 --spider Only check URL existence: $? is 0 if exists
 --header STR Add STR (of form 'header: value') to headers
 --post-data STR Send STR using POST method
 --post-file FILE Send FILE using POST method
 --no-check-certificate Don't validate the server's certificate
 -c Continue retrieval of aborted transfer
 -q Quiet
 -P DIR Save to DIR (default .)
 -S Show server response
 -O FILE Save to FILE ('-' for stdout)
 -o LOGFILE Log messages to FILE
 -U STR Use STR for User-Agent header
 -Y on/off Use proxy
...
 xargs
 xargs [OPTIONS] [PROG ARGS]
 Run PROG on every item given by stdin
 -0 NUL terminated input
 -a FILE Read from FILE instead of stdin
 -r Don't run command if input is empty
 -t Print the command on stderr before execution
 -p Ask user whether to run each command
 -E STR,-e[STR] STR stops input processing
 -I STR Replace STR within PROG ARGS with input line
 -n N Pass no more than N args to PROG
 -s N Pass command line of no more than N bytes
 -P N Run up to N PROGs in parallel
 -x Exit if size is exceeded
...
 yes yes [STRING]
 Repeatedly print a line with STRING, or 'y'
...
version 1.35.0

8/8

	man pages comparison
	echo
	cat
	grep
	true
	busybox (digest)

