
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RENDERING OF NONPLANAR MIRRORS
ZOBRAZOVÁNÍ POKŘIVENÝCH ZRCADEL

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MILOSLAV ČÍŽ
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠMILET
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This work deals with the problem of accurately rendering mirror reflections on curved

surfaces in real-time. While planar mirrors do not pose a problem in this area, non-planar
surfaces are nowadays rendered mostly using environment mapping, which is a method of
approximating the reflections well enough for the human eye. However, this approach may
not be suitable for applications such as CAD systems. Accurate mirror reflections can be
rendered with ray tracing methods, but not in real-time and therefore without offering
interactivity. This work examines existing approaches to the problem and proposes a new
algorithm for computing accurate mirror reflections in real-time using accelerated searching
for intersections with depth profile stored in cubemap textures. This algorithm has been
implemented using OpenGL and tested on different platforms.

Abstrakt
Tato práce se zabývá problémem přesného zobrazování zrcadlových odrazů na zakřiveném

povrchu v reálném čase. Zatímco planární zrcadla nepředstavují v tomto ohledu problém,
zakřivené povrchy se v dnešní době zobrazují především metodou environment mapping,
která aproximuje reálné odrazy a nabízí výsledky uspokojivé pro lidské oko. Tento přístup
však nemusí být vhodný např. v oblasti CAD systémů. Přesných zrcadlových odrazů
se dá dosáhnout pomocí metod sledování paprsku, avšak ne v reálném čase a tudíž bez
možnosti interaktivity. Tato práce zkoumá existující přístupy k tomuto problému a navrhuje
nový algoritmus výpočtu přesných odrazů v reálném čase pomocí akcelerovaného hledání
průsečíků s hloubkovým profilem uloženým v cubemap texturách. Tento algoritmus je
implementován pomocí technologie OpenGL a otestován na různých platformách.

Keywords
mirrors, reflections, real-time, OpenGL

Klíčová slova
zrcadla, odrazy, real-time, OpenGL

Reference
ČÍŽ, Miloslav. Rendering of Nonplanar Mirrors. Brno, 2017. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Tomáš Milet

Rendering of Nonplanar Mirrors

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Tomáš Milet. All the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

. .
Miloslav Číž

May 21, 2017

Acknowledgements
I thank my supervisor, Ing. Milet, for the original idea for the work, his patience and help,
and my family for their great support.

Contents

1 Introduction 2

1.1 Terminology Used in This Work . 3

2 Existing Approaches to Mirror Rendering 4

2.1 Rendering Planar Mirrors . 4
2.2 Deferred Shading . 5
2.3 Rendering Non-Planar Mirrors . 5

2.3.1 Environment Mapping . 5
2.3.2 Parameterized Environment Maps 6
2.3.3 Ray Tracing . 7
2.3.4 Virtual Objects . 8
2.3.5 Light Fields . 9
2.3.6 Reflection Space Image Based Rendering 10
2.3.7 Sample-Based Cameras . 10

3 New Cubemap Tracing Algorithm 11

3.1 Cubemap Properties . 11
3.2 Basic Principle . 13
3.3 Self-Reflections . 14
3.4 Intersection Criteria . 16
3.5 Ray Sampling Strategies . 16
3.6 Acceleration . 17
3.7 Use of Compute Shaders . 20
3.8 Number and Placement of CMOs . 24
3.9 Dealing with Unresolved Intersections . 25

4 Implementation 28

4.1 Engine . 28
4.2 Basic Algorithm . 29
4.3 Acceleration . 30
4.4 Compute Shader Version . 31
4.5 Debugging . 32

5 Results 34

5.1 Performance . 34

6 Future Work 38

7 Conclusion 40

Bibliography 41

1

Chapter 1

Introduction

If we pay close attention to the progress being made in computer graphics, we’ll find that,
aside from progressively better hardware, most of it is achieved by new algorithms that use
computationally cheap approximations that look realistic enough to human eye, especially
in real-time interactive graphics.

Image-order rendering methods, such as ray tracing, accurately model many physical
phenomena, but for a high computational cost, making them unusable in widely used real-
time applications. Many researchers put effort to designing hardware and software that
would allow ray tracing to be used in real-time [13]. Nevertheless, rasterization is still the
absolutely prevailing method in real-time rendering engines today, and probably will be for
at minimum a few more years.

Many problems of rasterization approach are caused by the light interacting with mul-
tiple object in the scene. This includes (soft) shadows, indirect illumination, refractions,
caustics and, last but not least, mirror reflections. Algorithms exist for rendering of some
of the mentioned phenomena, more or less accurately, but no single algorithm can yet
solve the problem of global illumination as a whole, due to the nature of rasterization that
treats objects in the scene separately. It is therefore necessary to address each phenomenon
individually.

In case of mirror reflections, planar mirrors are easily rendered with a simple two-pass
algorithm, because the scene is not distorted. Non-planar mirrors, however, pose a bigger
problem. Environment mapping is the most widely used algorithm for rendering non-planar
mirrors [22]. It approximates mirror reflections with significantly simplified model of the
scene, stored in a texture, and generally provides a good level of realism.

Though this approach of approximating reflections in favour of performance is very
suitable for certain applications, such as games, it may not be fitting the needs for accuracy
of other applications, such as CAD systems. For example, a vehicle designer may find
themselves in a situation when they need to check whether the driver can be blinded by
reflecting light focused to their eyes by a reflecting surface.

The main goal of this work is to study the current state of rendering non-planar mirrors,
experiment with new ideas and try to design a new algorithm that would allow accurate
reflection rendering in real-time. The algorithm was to be implemented with OpenGL API
and its performance was to be measured.

2

1.1 Terminology Used in This Work

This work will mostly use terminology of OpenGL [18] and cited articles. Some additional
important terms include:

• cubemap object (CMO) – This term is not to be confused with cubemap texture.
A cubemap object is a structure used by cubemap tracing algorithm and consists of
multiple cubemap textures and other attributes.

• cubemap tracing – This name will be used for the new proposed algorithm.

• reflector – This is the object representing the mirror.

• self-reflections – This is a phenomenon when a ray is reflected off of a mirror surface
more than once.

• frustum – Conventionally a view frustum is a portion of a pyramid culled by near and
far planes. In context of cubemaps we’ll also extend this term to include the whole
pyramid, not culled by additional planes.

3

Chapter 2

Existing Approaches to Mirror

Rendering

The area of realistic reflection rendering is not a new topic and there has been a long
lasting effort that gave life to a number of methods. The following sections summarizes
these methods. Chapter 5 compares them to the new method presented in this work.

It is worth mentioning that reflections are often studied together with refractions [9]
because both of these fenomena involve light ray redirection off of an object’s surface. Some
of the following methods may therefore also be used for refraction rendering. Note that for
refractions a single light ray in the scene very often refracts at least twice (when entering
the object volume and when leaving it), which is analogous to self-reflections, which are
typically difficult to achieve.

2.1 Rendering Planar Mirrors

Figure 2.1: planar mirror

As it’s been stated, planar mirrors are relatively
easy to be quickly rendered on modern GPUs
because the scene seen in the mirror is not dis-
torted by the mirror, only transformed by means
of reflection, which is an affine transformation
and can be achieved with matrix multiplication
[15]. A common way to render the scene with
the mirror, such as the one in fig. 2.1, is to use
stencil buffer in the following way [11]:

1. Clear stencil buffer to 0s and render the scene without the mirror.

2. Render the mirror into stencil buffer (writing 1s) and also clear depth buffer at mirror
pixels.

3. Mirror the scene by the mirror plane (by changing the transformation matrix).

4. Render the mirrored scene (without the mirror) again and only on pixels where stencil
buffer values are set to 1. Clipping by the mirror plane may be needed before rendering
to avoid mirroring the objects behind the mirror to its front [14].

In the early days of limited GPU support for shader programming, some applications,
such as the games Metal Gear Solid: The Twin Snakes (2004) or Conker’s Bad Fur Day

4

(2001), went as far as to implement planar reflections by completely mirroring the reflected
scene behind the reflector.

2.2 Deferred Shading

Deferred shading is a key technique in achieving high performance in applications using
complex fragment shader programs, such as the cubemap tracing algorithm presented in
this work. Deferred shading, though under different names, has been known since at least
1988’s work of Michael Deering and his colleagues [5] [17].

Without this technique, expensively computed fragments are often discarded due to not
passing depth test. Deferred shading aims to invoke compute-intensive fragment shaders
only on fragments that actually get to be seen in the final image. This is achieved with
two-pass rendering:

1. In the first pass, the scene is rendered from the camera point-of-view into so called
G-buffer (geometry buffer). G-buffer contains multiple textures, each one storing
some kind of data (such as a normal or world-space position) needed by the expensive
fragment shader invocation. G-buffer can be constructed relatively quickly using
a simple fragment shader and MRT (multiple render targets).

2. Second pass runs the expensive fragment shader on each pixel of the screen (by ren-
dering a full-screen quad) and operates only on previously constructed G-buffer values
without discarding any fragments.

Figure 2.2: Deferred shading shown here uses world position (left), normal (middle) and
texture color (not shown) for the final rendering (right).

2.3 Rendering Non-Planar Mirrors

This section explains common approaches to real-time rendering of non-planar mirrors,
which is the main focus of this work.

2.3.1 Environment Mapping

One of the most widely used methods of approximating reflections on curved surfaces is so
called environment mapping (or reflection mapping), introduced in 1976 [2].

Environment mapping usually offers a good balance between accuracy and speed. It
works by pre-rendering the full spherical view of the scene from a certain point (usually the

5

center point of the reflecting object) using a map projection to store the rendered view into
a two-dimensional texture and later using the texture to look up pixels by rays reflected off
of the mirror surface. Some of the map projections used with this method are:

• Sphere mapping – This is one of the earliest used mappings [10]. It uses a single texture
to store the scene projection. The texture is constructed by rendering the scene as
seen by looking (through orthographic lens) at a reflecting sphere placed in the scene
at the projection center point. The technique suffers from drastic undersampling of
certain parts of the scene – we say such mapping is view-dependent because it cannot
be used for any position of the viewer without this undersampling becoming very
apparent. The mapping also isn’t surjective (meaning many pixels of the texture
remain unused).

• Dual-paraboloid mapping – This technique was introduced in 1998 to improve on
sphere mapping by using two paraboloids (and two textures) instead of a sphere [10].
This mapping samples the world more evenly and so we can call it view-independent.

• Cube mapping – In 1986 a way of projecting the world onto six sides of a cube has been
introduced by Ned Greene. This collection of six textures is called a cubemap. Cube
mapping offers an advantage over above mentioned methods by not applying a non-
linear transformation to the scene, which can result in artifacts due to only linear
interpolation support in the hardware. The technique, however, requires rendering
of the scene six times and then performing several conditional jumps to decide in
which of the six textures the texel is to be looked up, therefore cube mapping wasn’t
being widely used in the early years of OpenGL. Nowadays it is the most commonly
used technique, even though it still samples the spherical surface slightly unevenly
[20][10][7].

• HEALPix (Hierarchical Equal Area isoLatitude Pixelisation) – This algorithm sam-
ples the spherical surface uniformly, with each pixel having the same solid angle. The
pixel lookup is expensive and MIP map filtering is complicated [20].

mirror

scene objects

viewer

projected
scene

Figure 2.3: Environment mapping looks up pixels by
casting a ray from the center point of the world pro-
jection in the same direction as the reflected ray.

Other methods, such as Tetra-
hedron or Unicube mapping, exist,
but there generally isn’t one best
solution to use.

Environment mapping in pre-
sented form also isn’t able to
model self-reflections. Dynami-
cally changing scenes require peri-
odical re-rendering of the environ-
ment map on the fly.

Fig. 2.3 shows the principle
as well as the shortcoming of this
method, i.e. the source of inaccu-
racy and lack of parallax. Fig. 2.4
shows the results of the method.

6

Figure 2.4: environment mapping example: cubemap projection on the left and the result
scene with teapot mirror on the right

2.3.2 Parameterized Environment Maps

The disadvantage of environment maps capturing the scene from a single point is addressed
by their parameterization. The work by Brian Cabral et al. [3] allows cubemaps (or other
environment maps) to be parameterized by a position in space. This however comes at
a great cost of having to precompute the scene at each point of parameter space with ray
tracing and then compressing all the resulting textures into a convenient representation. At
runtime, the environment map closest to the viewpoint is chosen and used, with possible
blending for smoother results. This restricts the viewer’s movement and is therefore suitable
only for specialized applications.

2.3.3 Ray Tracing

Ray tracing and other similar image-order methods support accurate mirror reflections
by default, but they are still unusable in real-time. Efforts are being made to bring ray
tracing to real-time applications [13]. But to bring a completely new architecture model
from research to wide use in practice will yet take a long time. We can therefore expect
rasterization-based GPUs to remain the standard for a minimum of a few more years. Ray
tracing can however be useful for this work to test the accuracy of our results.

One of the key issues of ray tracing is that a construction of either hierarchical bounding
volume or space partitioning acceleration structures is needed to reduce the number of
intersections for each cast ray to check. In case of dynamic scenes, such structure would
need to be reconstructed at every frame. The type of best suitable acceleration structure is
also dependent on the type of the scene. Furthermore, the update of per-frame structures
depends in a similar way on the type of motion and animation of the objects in the scene
[21]. This poses a problem that has to be dealt with when there is unpredictable movement
in the scene. Another reason that keeps ray tracing from being used interactively is that it
is mostly incompatible with feed-forward pipeline used in modern GPUs [16].

Many times, ray tracing works better with voxel data, since regular axis-aligned cubes
are easier to traverse, intersect and build hierarchy from than general-shaped triangles. On
the other hand, volumetric data have many disadvantages, such as difficult animation or

7

high memory demands. For this reason, polygonal representation of geometry is prevailing
in many areas. Voxelization of such data is possible but usually expensive. Algorithms for
fast voxelization (in order of milliseconds [6]) are being developed and may become a part
of the solution for real-time ray tracing, similarly to voxel cone tracing that recently made
interactive indirect illumination possible [4].

2.3.4 Virtual Objects

This method was introduced in 1998 [15]. The algorithm is very similar to that of rendering
a planar mirror, with one important step added – before the reflected scene is rendered, it
is deformed according to the reflector surface. It can also be applied recursively to allow
for mirrors being reflected in mirrors. The advantages of this method are apparent: the
mirror rendering is done in a similar way to how the rest of the scene is rendered and the
scene can be dynamic.

Each triangle of the reflector along with the viewer position define two spatial cells
(similarly to for example shadow volumes): a reflected cell covering the space that is re-
flected in the triangle and a hidden cell covering the space obscured by the triangle. Only
the vertices lying in reflected cells can potentially be seen in the mirror. For each of these
vertices a corresponding virtual vertex is computed by using a relative position within the
reflected cell, expressed with a triplet of barycentric coordinates. Virtual vertices are then
connected to form virtual polygons that will form the virtual object seen in the mirror.

The key part is searching for the cell a given vertex falls into. This can easily be done
for simple shapes such as cylinders or spheres. Acceleration structures (such as BSP trees)
can be used with general shapes. Authors themselves introduce an acceleration structure
called an explosion map, which projects the cells onto a sphere surface. Explosion map has
to be recomputed each time the viewer position changes.

Figure 2.5: virtual objects, image from the original
work [15]

Challenges also arise from the
fact that vertices of one polygon
may lie partially in reflected/hid-
den/neither cells, for example in
case of an reflected object inter-
secting the reflector. This poses
a requirement to compute virtual
vertices for each vertex and ad-
ditionally, like in the case of pla-
nar reflections, clipping the trans-
formed scene by the reflection sur-
face, which in this case requires an
additional z-buffer.

The authors deal with reflec-
tions on general-shaped surface by
dividing it to subparts of which
each falls into one of the following
categories:

• planar – This case poses no problems, as explained in section 2.1.

• convex – Reflected (hidden) cells never intersect other reflected (hidden) cells.

8

• concave – Reflected cells can intersect each other and therefore a vertex can lie in
multiple cells simultaneously, which may be an issue. However, this case is treated in
the same way as the convex case in the original work, because the problematic space
areas are relatively small and the reflections look chaotic even in reality.

The issues of this method are mainly:

• It deforms the scene at vertex level, which can cause artifacts to appear if the reflected
object is composed of a low number of triangles. This can be addressed by tessellating
the object.

• Very complex surfaces have to be decomposed to a high number of subparts, each
requiring an extra rendering pass. Such surfaces can also produce subparts that are
too fine, for example if saddles are present. Manual decomposition is recommended
for such cases.

• As mentioned above, concave reflections can be inaccurate. Also the explosion map
has to be recomputed whenever viewer position changes.

2.3.5 Light Fields

a b

α

Figure 2.6: Reflector is surrounded
by a cube of light fields (green) pa-
rameterized by the angle α which are
queried by reflected rays. Note that
ray b cannot yield a result as the an-
gle it enters into the light field is too
sharp.

Light field is an extension of texture, in which each
texel is indexed, along with conventional u and v co-
ordinates, with two additional coordinates s and t.
These coordinates together define a ray coming from
uv coordinates into the scene, so that the light field
captures the scene from all possible angles within
a certain range. We distinguish between light field
slabs, which are planar light fields, and surface light
fields, that capture the rays from each point of arbi-
trary surface.

Light field slabs were used in a work by Wolfgang
Heidrich et al. in 1999 [9] to store a ray database
that could be used to render accurate reflections and
refractions. In 2005, a work titled Real-Time Reflec-
tion Mapping with Parallax [22] built on this method
to form a very promising algorithm.

Six precomputed light fields are arranged as
a cube around the reflector. This light field cube is
then queried with reflected rays to find the reflected
color (fig. 2.6). Though the algorithm performs very
well in many situations, it has the following disadvantages:

• Light fields require a lot of memory to store and their construction is expensive.

• The algorithm doesn’t model self-reflections.

• Rays coming under very sharp angles against the light field cannot be looked up in
the basic version of the algorithm. The authors show how more light fields can be
utilized in order to guarantee any ray intersecting the light field cube can be looked
up, but this costs more resources.

9

• Rays that miss the light fields cannot be looked up, which can happen if the reflecting
object moves or deforms outside of the boundaries of the enclosing light fields.

Figure 2.7: Real-Time Reflection Mapping with Parallax, image from the original work [22]

2.3.6 Reflection Space Image Based Rendering

Alternative approaches exist, such as image-based methods [3]. In the cited work, sphere
maps are used to capture the scene from multiple different points. This information is then
used to create an image from arbitrary viewpoint positions with the help of warping. The
idea of capturing the scene at multiple points into environment maps is reused in this work.

2.3.7 Sample-Based Cameras

Voicu Popescu et al. [16] presented quite complex method that nevertheless achieves good
results, including self-reflections. It is based on constructing helper pinhole cameras whose
views form the virtual image seen in the mirror. The cameras are stored in BSP trees.
Aside from the ray map, camera and BSP tree constructions and tessellation of reflected
geometry, it is also required (in a manner similar to virtual objects) that complex reflector
geometry is divided to so called simple and complex parts, of which the complex ones are
rendered using environment mapping.

10

Chapter 3

New Cubemap Tracing Algorithm

The following sections describe the principle of the new algorithm, the main contribution
of this work.

3.1 Cubemap Properties

As this work relies on cube mapping, we’ll further explore the cubemap projection properties
so that they can be used in later chapters.

Definition 3.1. Projection of point ~p onto cube C is an intersection ~q of the cube C surface
and a semi-straight line coming from the center point of C towards the point ~p.

Theorem 3.2. All points of a line segment in 3D space projected onto a cube lie on a single
plane.

Proof. Let ~c be the cubemap center point and l1 the line segment being projected, defined
by two points p1 and p2 as

~l1(t) = t · ~p1 + (1− t) · ~p2, t ∈ [0, 1]. (3.1)

Let’s suppose l1 doesn’t intersect the cube (if it does, we can simply consider a smaller
cube with the same center point). For each t, the point ~l1(t) is by definition 3.1 projected
to a point that has to lie on another line segment l2 defined by the point ~l1(t) and the
cubemap center ~c as

~l2(s, t) = s · ~l1(t) + (1− s) · ~c, s ∈ [0, 1]. (3.2)

By substituting 3.1 to 3.2 and simplifying we get

~l2(s, t) = s · (~p2 − ~c) + st · (~p1 − ~p2) + ~c (3.3)

which is a parametric form of an equation that defines a subset of a plane as a linear
combination of two direction vectors (~p2−~c and ~p1− ~p2) plus a constant offset vector (~c).

This also means that the projection to each side of the cube is rectilinear [12], i.e.
straight lines in 3D space are projected to straight lines at the projection plane. This is
obvious as the intersection of the plane ~c~p1 ~p2 with another plane (the cube side) is a line.

These facts are important because they allow us to easily trace a line projected onto
a cube surface by projecting only two points that define the line and using a linear inter-
polation of the cubemap coordinates for the rest of the points, even if the line is projected
onto multiple sides, as seen for example in fig. 3.5.

11

Theorem 3.3. Any semi-straight line can be projected to at most four sides of a cube,
unless it intersects its center point.

Proof. 1. Consider a cube with vertices named as in the picture:

A
B

C
D

E
F

G
H

I

p0

Furthermore let’s have an arbitrary semi-straight line l that doesn’t intersect I and
starts from a point p0. Let each side of the cube define an infinite view frustum by
all points in space that are projected to it. The whole space is then subdivided into
six such frusta, one for each side (eg. EFGHI). It is obvious that in order for l to
be projected to given side, it has to intersect its frustum. Therefore we want to show
that l can intersect at most four frusta.

2. p0 has to lie in exactly one frustum. Since the cube is symmetric, let us without the
loss of generality suppose it lies in frustum defined by ABCDI (bottom).

3. Tracing l from p0, it now has to enter one of the neighboring frustums: ABEFI,
BCFGI, CDGHI or ADEHI. The cases are symmetric so suppose it enters ABEFI

(front).

4. By entering the frustum, l intersected the ABI plane and can no longer enter any
frusta whose whole volume lies below the plane. These are ABCDI (the starting
frustum) and CDGHI (back).

5. Going further along l, it can now enter one of the following frusta:

(a) ADEHI – In the same way we now eliminate ABEFI and BCFGI. The
only unvisited uneliminated frustum is now EFGHI (top), by entering which
ADEHI gets eliminated, leaving no frustum left. Three inter-frustum transi-
tions were made in total, i.e. four frusta are intersected.

(b) BCFGI – Symmetric to previous case, we get to the same result.

(c) EFGHI – ABEFI and ABCDI get eliminated. The only unvisited unelimi-
nated frusta are now ADEHI (left) and BCFGI (right), which are symmetric
cases. Entering ADEHI eliminates BCFGI and EFGHI and leave no frustum
to go to next. Again, three transitions were made and four frusta are intersected.

12

3.2 Basic Principle

The cubemap tracing algorithm, similarly to environment mapping described in section
2.3.1, uses cubemap textures to model the surrounding world being reflected in the mirror.
However, unlike environment mapping, the cubemap tracing algorithm doesn’t only use one
cubemap texture. Multiple cubemap textures are grouped into so called cubemap object
(CMO). One to multiple CMOs can be used with cubemap tracing. The basic version
is designed to be implemented with fragment shaders, a compute shader version will be
presented later.

vie
w ra

y

viewer

cubemap mirror

scene objects

cubemap

dept texture

intersection

trace angle

A

B

C

object

Figure 3.1: Principle of the cubemap tracing algorithm, using one CMO. The reflected
view ray is iteratively traced along an angle defined by the mirror-incidence point (A) and
a distant point of the ray (B). The goal is to find the intersection with scene objects (C),
which is possible because of the objects being captured in the cubemap depth texture.

Suppose a set of N CMOs S = {Θi | i ∈ {1 . . . N}}. Each CMO Θi has the following
attributes:

• a world position ~Θp
i , not necessarily inside the mirror,

• diffuse color cubemap texture ΘC
i ,

• world distance cubemap texture ΘD
i , computed from depth texture,

• mirror mask and normal cubemap textures, ΘM
i and ΘN

i respectively, if self-reflections
are to be used,

• hierarchical cubemap acceleration texture ΘA
i , if acceleration is to be used.

The cubemap textures, such as ΘC
i ,Θ

D
i etc., can be sampled using a 3D direction vector

emanating from the cube center, as defined by OpenGL [18, p. 241]. This is denoted with
brackets, e.g. ΘD

i (~u). Let us also suppose that the cubemaps are axis-aligned and have the
same resolution, with the side length in pixels being an integer power of two.

13

Each CMO should be placed at different position in the scene, not necessarily inside the
mirror.

Using distance texture instead of non-processed dept texture prevents shaders from
having to recompute each depth value (which is usually in logarithmic scale) to actual
world distance, and is therefore better for performance reasons.

In the very basic version of the algorithm, the ΘC
i and ΘD

i cubemap textures are con-
structed before rendering the mirror. This is done by rendering the scene without the
mirror object. When rendering the mirror pixels, a reflected ray is constructed, using the
viewer world position, the view sample world position and normal at the incidence point.
The ray is then iteratively traced in each CMO, checking against the distance texture ΘD

i

for intersection (within given error e) in each step.

3.3 Self-Reflections

The algorithm potentially supports rendering self-reflections, although the feature can also
be turned off. If we want self-reflections allowed, the algorithm is extended as follows.

The position of all CMOs should be outside the reflector, as the reflector geometry will
be rendered into cubemap textures (ΘM

i , ΘN
i etc.). CMOs placed inside the mirror would

either mostly not capture the mirror if backface culling is turned on, or see only the inside
of the mirror and nothing else in the scene if backface culling is turned off. (Note that the
latter might still work if there are enough CMOs outside the reflector – this is left to further
research.) At render time, the rays are traced in the same way as they would normally be.
If an intersection is found, it is decided, using the values in ΘM

i mirror mask texture,
whether the intersection lies at the reflector surface or not. If it does, a new reflected ray is
constructed (using the position of the intersection and mirror surface normal stored in ΘN

i)
and traced again. The new ray cannot be traced from the exact start, because by definition
it always starts at an intersection with the reflector, which would immediately terminate
the tracing. For this reason, a bias value b is added to initialize the ray further away from
its origin. This value is a constant in alg. 1, but later experiments show that it’s difficult
to set and should probably be computed individually for each reflected ray.

A different strategy that would avoid the need for bias value would be to search for
a first intersection that comes after a non-intersection sample.

14

Data:

fragment shader inputs:
~p1 world position of the mirror surface point being viewed
~n surface normal at ~p1
~v position of the viewer
S the set of CMOs as described above

algorithm parameters:
e intersection distance limit
s interpolation step, s ∈ (0, 1)
l traced ray length
r upper bounce limit for self-reflections
b self-reflection bias, b ∈ (0, 1)

Result: reflected color

1 ray_no← 0
2 ~p2 ← ~p1 + l · reflect(~p1 − ~v, ~n) // get the ray end point

3

4 if ray_no = r then

5 return not found
6 end

7

8 for Θ ∈ S do // for each cubemap

9 t← 0 if ray_no = 0 else b

10

11 while t ≤ 1 do // trace the ray

12 ~p = interpolate(~p1, ~p2, t) // get the ray point

13 ~u = normalize(~p− ~Θp) // get the cubemap coords

14

15 if |len(~p, ~Θp)−ΘD(~u)| ≤ e then // intersection?

16 if ΘM (~u) then // intersection on mirror?

17 ~p1 ← ~Θp + ~u ·ΘD(~u) // init new position

18 ~n← ΘN (~u) // init new normal

19 ray_no← ray_no+ 1
20 go to line 2 // trace the new ray again

21 else

22 return ΘC(~u) // return the color

23 end

24 end

25 t← t+ s

26 end

27 end

28

29 return not found // no intersection found

Algorithm 1: Cubemap tracing algorithm with self-reflections. (Without self-reflections,
lines 16 to 21 would be dropped.) Distance threshold criteria for intersection and constant-
step sampling are used here.

15

3.4 Intersection Criteria

Unlike with ray tracing, tracing individual rays in cubemap tracing happens in iterations
of discrete steps. We can use different criteria for deciding whether the ray intersects the
distance profile in given iteration. Let

∆i = δ(pi)− δ(di)

where δ(pi) is the distance of the point pi on the ray to the cubemap center in ith iteration
and δ(di) is the value given by the distance profile in ith iteration (see line 15 in alg. 1).
We can now define two different intersection criteria:

• distance threshold – We declare the intersection to have happened if and only if |∆i| is
below some predefined threshold ε. Let tεd be the the first intersection found using the
distance threshold criterion, in terms of the ray parameter t. Simply put, we declare
an intersection when the ray gets close enough to the distance profile.

• analytical intersection – We keep a record of the distance in the previous iteration
∆i−1. We declare the intersection if and only if the sign of ∆i and ∆i−1 differ. Note
that this is affected by the iteration step length l. Let tla be the the first intersection
found using this criterion, in terms of the ray parameter t. Simply put, we declare an
intersection if the ray crosses the distance profile curve.

A B C

e

Figure 3.2: Intersection criteria: distance threshold
will detect A as an intersection given high enough
threshold value (≥ e), but such value may also de-
tect points we wouldn’t consider an intersection. Lower
threshold value may miss A and detect B or even miss
B and fail completely. Analytical intersection will de-
tect A. Note that it would also detect C, which might
be undesirable.

Possibilities arise to set up dif-
ferent strategies for searching for
the intersection, possibly combin-
ing the above defined criteria. We
may for example utilize distance
threshold and search for tεd but
also keep the record of the first in-
tersection tla that we can use in
case we’re unable to find tεd. We
may also keep multiple analytical
intersections using different l val-
ues.

Another strategy may be based
on switching between distance
threshold and analytical intersec-
tion depending on some param-
eters, for example on how close
the ray is to being perpendicu-
lar to the cubemap side (which
can quickly be decided with a dot
product of the cubemap coordi-
nates of the start and end point of the ray).

Visual differences and impacts on the number of iterations needed to trace the ray can
be seen in the fig. 5.1.

3.5 Ray Sampling Strategies

By the length of the step, we’ll define three sampling strategies:

16

• constant angle – This is a simple strategy that takes use of the fact (proven in section
3.1) that we can linearly interpolate between the cubemap coordinates of the projected
start and end point of the ray. Each step is constant in angle. This method suffers
from undesirable increasing step length along the ray and decreasing sampling density
in the distance, possibly skipping valid intersections and causes distant objects to not
be seen in the mirror.

• constant step – This strategy keeps a constant step length instead of angle by inter-
polating the position along the ray (not the cubemap coordinates). The sampling
density is kept the same and therefore better results are obtained. However, more
steps are needed and with rays close to perpendicular to the projection plane many
texels can be sampled multiple times (because the step angle gets very small), which
is inefficient.

• optimal – Our goal when tracing the projected ray is to sample each texel at most
once. This might be achieved with a line rasterization algorithm. Another way is to,
after sampling a texel, move to the next one using the below presented algorithm 4
– this effectively achieves rasterization, but the algorithm is not simple enough to be
used very often, so this strategy is to be considered and tested.

Two of these strategies can be seen in fig. 3.3. We might also try to create strategies that
sample the ray in different order, e.g. backwards, randomly etc. These strategies should
nevertheless be applied carefully, as we need to find the first (i.e. closest) intersection to
the incidence point.

3.6 Acceleration

Figure 3.3: sampling strate-
gies: constant angle (left, note
the skipped intersection) vs con-
stant distance (right)

Many searching algorithms can be accelerated with hier-
archical acceleration structures, such as k-d trees or im-
age pyramids, such as hierarchical z-buffer [1] [8] [19].
Our case of searching for the first intersection of a ray
with arbitrary distance profile can be accelerated using
an image pyramid structure. In essence, the approach is
similar to minimum bounding rectangles, applied to pixel
values.

The structure, in 1D, can be seen in the figure 3.4.
The hierarchy consists of [min,max] interval values and
can be quickly computed by parallel reduction. Issues
that burden many hierarchical structures, such as tree
balancing, are also avoided here. We can see that at the
beginning of each section of the ray it can sometimes be
determined that it cannot contain the intersection with
the distance profile. The section can then be skipped.

Let us refer to the sections of the acceleration structure as tiles. In case of cubemap
representation, i.e. multiple 2D textures addressed with a 3D vector, the world-space
boundaries of a tile are not as easily determined as in 1D case, as seen in fig. 3.5. A helper
subroutine is needed.

17

This subroutine is called acc_bounds in alg. 2, and its basic structure is shown in alg.
4. It takes the current ray, position on the ray and acceleration level as its input and returns
the next and previous boundary in terms of interpolation parameter t.

Using this algorithm, we expect to reduce the number of iterations needed to find the
intersection. The exact amount of acceleration that will be achieved in practice is however
very difficult to find. This is caused by the probabilities (of intersection occurring, of being
able to skip a tile etc.) depending very much on the properties of the scene. The values
present in the distance texture clearly do not show any common probability distribution
and are usually locally dependent on each other, i.e. values close to each other will very
likely be close in value because there are a lot of flat surfaces in the scene. The worst
and best case scenarios stay the same for both accelerated an unaccelerated cases, but the
average case should benefit from acceleration. The question of how much exactly is for the
mentioned reasons left for testing in later chapters.

traced ray

first

intersection

1 2

1.1 1.2 2.1 2.2

d
is

ta
n
c
e

∞

Figure 3.4: Acceleration structure used to quickly find the first intersection of the traced
ray with the distance profile, simplified to 1D. In this case, two-level structure is used: first
level consists of two sections (1 and 2), the second level is a subdivision of the first level and
consists of four sections (1.1, 1.2, 2.1 and 2.2). Each section contains a [min,max] interval
of distance over the area it covers. This information can be used to quickly discard sections
that cannot contain the intersection, in this case 1.1 and 1.2.

18

p0

p1

p'0

p'1 p'0

p'1

Figure 3.5: Ray projected onto cubemap acceleration structure can span over multiple
cubemap sides (but no more than four, as proven in section 3.1). Red color marks the
acceleration structure boundaries.

Data:

inputs:
Θ, t, ~p1, ~p2 values from algorithm 1
B helper array storing the next boundary value (in terms of t),

for each acceleration level, initialized with 0s
parameters:
afrom lowest acceleration level to use
ato highest acceleration level to use

1 for i ∈ {afrom . . . ato} do

2 if t ≥ B(i) then

3 min,max← ΘA(~u, i) // section dist. interval

4 tnext, tprev ← acc_bounds(~p1, ~p2, t, i) // section boundaries

5 dnext ← dist(~Θp, interpolate(~p1, ~p2, tnext)) // distance at boundary

6 dprev ← dist(~Θp, interpolate(~p1, ~p2, tprev)) // distance at boundary

7

8 if (max < dnext ∧max < dprev) ∨ (min > dnext ∧min > dprev) then

9 t← tnext // skip the section

10 break
11 else

12 B(i)← tnext // next section boundary

13 end

14 end

15 end

Algorithm 2: Acceleration algorithm to be inserted before the line 12 in algorithm 1. It
checks if a section of ray can be skipped and if so, modifies the value of t.

19

3.7 Use of Compute Shaders

This section will describe an alternative version of the algorithm that uses compute shaders
instead of fragment shaders.

The acceleration structure for this case is slightly different from the above presented
version – the subdivision into cells alternates between 4 × 8 and 8 × 4 at each level, as
shown in fig. 3.6.

The algorithm itself is presented as alg. 3. It takes direct use of the acceleration
structure and so an unaccelerated version isn’t presented. The algorithm traces the ray by
traversing the acceleration structure depth-first for each side of the cube the ray is projected
to. Maximum of four sides will be searched for a single ray, as proven in section 3.1.

To perform rendering with compute shaders, we firstly create a shader storage buffer B,
which is then filled by the fragment shader with the information for the following compute
shader dispatch. After the fragment shader pass, the buffer B should, for each visible
mirror pixel, contain the pixel coordinates and information that defines the reflected ray to
be traced for the pixel. Compute shader dispatch is then started. The size of the dispatch
in x-direction is defined as the number of mirror pixels stored in B divided by 8, as each
workgroup will be processing 8 pixels, and the size in other dimensions is left at 1. The
local size of the workgroup is 32× 8 (32 for the number of threads processing a single pixel
and 8 for the number of pixels processed by a single workgroup). 32× 8 makes workgroups
the size of 256.

The compute shader version of the algorithm is potentially more efficient because it
effectively achieves rasterization and samples each texel at most once by default.

1×14×832×32
128

×

256

1024

1024

128

256

32

32

4

8

level 0level 1level 2level 3

Figure 3.6: The acceleration structure used with compute shaders is subdivided into 8× 4
tiles so that the number of tiles processed at the current level is always 32, which is the
warp size on NVidia hardware and also the argument size of the ballot instruction, in bits.
8× 4 and 4× 8 subdivisions are being alternated between the levels so that the tile width
to height ratio doesn’t fall under 0.5 in order to keep the depth dispersion within it as low
as possible. The base resolution of 1024 × 1024 was chosen to fit this way of subdivision.
Image subdivided in this way can be stored in MIP maps, as shown in fig.4.2.

Alg. 3 requires deciding whether given ray intersects a subspace defined by the acceler-
ation structure cell (function intersects_cell). This can be done as follows.

Firstly we transform the coordinate system of the current cubemap side to the coordi-
nate system shown in the picture:

20

d

x0

x1

y0

y1

[0.5,-0.5,0.5]

[-0.5,-0.5,0.5]

[0.5,0.5,0.5]

[-0.5,0.5,0.5]

We want to decide whether a ray defined by the origin point ~p and a unit direction
vector ~d as

~p+ t · ~d, t ∈ [0,∞] (3.4)

intersects the infinite cell frustum defined by points [0, 0, 0], [x0, y0, 0.5], [x1, y1, 0.5] as all
points ~s such that

~sz

0.5
· x0 < ~sx <

~sz

0.5
· x1 ∧

~sz

0.5
· y0 < ~sy <

~sz

0.5
· y1. (3.5)

By substituting 3.4 to 3.5 we get a system of linear inequalities, which we are able to
simplify to

2x0~pz − ~px < t(~dx − 2~dzx0) ∧

2y0~pz − ~py < t(~dy − 2~dzx0) ∧

~px − 2x1~pz < t(2~dzx1 − ~dx) ∧

~py − 2y1~pz < t(2~dzy1 − ~dy).

Solving for t we get the final system

t
?

6=
2x0~pz − ~px
~dx − 2~dzx0

∧ t
?

6=
2y0~pz − ~py
~dy − 2~dzx0

∧ t
?

6=
~px − 2x1~pz

2~dzx1 − ~dx
∧ t

?

6=
~py − 2y1~pz

2~dzy1 − ~dy

where each
?

6= inequality symbol is either > if the fraction denominator is positive or <

if it is negative (zero means a boundary case). We want to find whether the system has
a solution, which can very easily be done by creating an interval of solutions [t0, t1] and
checking whether t1 ≥ t0, in which case the line intersects the cell space (otherwise not).

If there exists a solution, we should additionally check for its validity. Particularly,
negative values of t (solutions that do not lie on the specified semi-straight line) and solu-
tions with negative z coordinate (which may satisfy the equation 3.4 but do not lie in the

”forward“ spanning frustum) should be considered invalid. We can do this by substituting
t0 and t1 values into the ray equation by which we get two solutions and we check whether
at least one of them satisfies the conditions.

The function intersected_side_frusta returns ordered list of sides to which given
ray will be projected. The list can be constructed as follows:

21

1. Decide the first side by taking the ray starting point and finding the largest magnitude
of its coordinates [18, p. 241].

2. Decide the last side the same way with the ray end point.

3. Decide the remaining sides between the first one and the last one. There can be at
most two sides left, as shown in section 3.1. This can be done by checking all remaining
frusta with the function intersects_cell that was described in previous paragraphs.
(The order of these two sides can be decided by calculating the t parameter.)

Alternatively, all side frusta can just be checked as in point 3. The sides may also be
left unordered, in which case all of them have to be searched and of all intersection found,
the closest one to the cube center will be returned.

The function first takes the map of the current acceleration level and returns the first
cell that should be checked for intersection, i.e. the first cell the ray intersects. We need the
first cell because we are looking for the first intersection along the ray. The implementation
of the function can be simple: at the start of the invocation the direction of the projected
ray in the cubemap side coordinates is computed. This can be one of four values: RB
(left-to-right, top-to-bottom), LB (right-to-left, top-to-bottom), RT (left-to-right, bottom-
to-top), LT (right-to-left, bottom-to-top). The cell mask will then be traversed line by line
in the same direction and the first cell will be returned (fig. 3.7).

1 2

3

4

5

6

Figure 3.7: At each level of the acceleration structure a binary mask is constructed. The
mask says which cells may contain the intersection (this is a subset of cells that the ray
intersects, or, in other words, gets rasterized to) – an example is shown in the figure. The
cells should proceed to be checked in the order the ray intersects them as shown in the figure.
The order is decided by going through the cells in the same direction as the projected ray
(left-to-right, bottom-to-top in the picture).

22

Data:

inputs:
S the set of CMOs as described in the section 3.2
~p1, ~p2 the traced ray start and end point, respectively
n ID of the shader invocation, n ∈ {0 . . . 31}
levels number of levels of the acceleration structure

shared between threads:
m cell map of boolean values, indexed by level and shader ID

Result: reflected color

1 for Θ ∈ S do // for each cubemap

2 sides← intersected_side_frusta(~p1, ~p2, ~Θp)
3 for side ∈ sides do

4 level← 0
5 cell← (0, 0) // cell being checked by the workgroup

6 backtracking ← false // whether coming from top or bottom

7 loop // examine the next cell

8 if not backtracking then

9 m(level, n)← intersects_cell(~p1, ~p2, ~Θp, level, n) ∧
intersection_possible(~p1, ~p2, level, n)

10 wait on barrier // ballot instruction in GLSL

11 end

12 cell← first(m, ~p1, ~p2) // first intersected cell

13 if cell is none then // no more cells to check?

14 level← level − 1 // go up

15 backtracking ← true

16 if level < 0 then

17 break // no intersection at this side

18 end

19 else

20 m(level, n)← false // mark the cell checked

21 level← level + 1 // go down

22 backtracking ← false

23 if level = levels then

24 return get_pixel(Θ, side, cell) // intersection found

25 end

26 endloop

27 end

28 end

29 return not found

Algorithm 3: Compute shader version of cubemap tracing algorithm executed by 32
threads for a ray corresponding to a single pixel – we start at the top subdivision level
(0), each invocation checks for intersection with one of the 32 cells and broadcasts the
binary information (the cell mask) to others. Once the complete 32-bit information is
available to all invocations, they find the first intersected cell in the direction of the ray
and proceed to check it the same way at a lower level.

23

3.8 Number and Placement of CMOs

Only those parts of the scene can be reflected in the mirror that are seen from one of
the CMOs’ positions, which also affect the resolution the different parts of the scene are
captured in. We should therefore examine ways the CMOs should be placed in the scene.

p1

p2

Figure 3.8: Potentially reflected area (red) can be approximated (green) by placing the
cubemaps on the reflector surface (points p1 and p2).

Similarly to work of Ofek and Rappoport [15], let us define a potentially reflected area
of the scene as a set of all positions from which at least one point on the reflector surface
can be seen – or vice versa, by the laws of geometrical optics, the set of all points that can
be seen from at least one point on the reflector surface. Let the complementary subspace
be called hidden.

Let P be the set of all points on the reflector surface. Given a single point pa ∈ P , let
V (pa) be the set of all scene points directly visible from position pa. We can obtain the
potentially reflected area as an union

⋃
p∈P V (p). Though this is an union of infinitely many

sets, we intuitively see that usually the first few points we add contribute the vast majority
of visible points. We can therefore very well approximate the whole potentially reflected
area by constructing the union for only a few points that are separated by considerable
distance at the surface. We can use those points as the positions for the CMOs, i.e. we
place the CMOs directly at the reflector surface to approximate the potentially reflected
area.

Note that in case of self-reflections when the reflector itself has to be seen by the CMOs,
we should leave an offset between the CMO and the surface in order to prevent projecting
the intersected reflector surface as a perpendicular area, clipping the surface with near plane
during rendering to the cubemap etc.

The number of CMOs used may depend on the complexity of the scene, but shouldn’t be
too high, as each CMO adds to the demands on computational time and will contribute only
little to the total potentially reflected area covered, as mentioned in previous paragraphs.
On the other hand, if the intersection is found early, the remaining CMOs don’t have to
be searched. Attention should therefore be payed to the order in which CMOs are placed
– place the first one to cover the most likely parts of the scene to be reflected, similarly
the second one etc. Note that the order can be changed without having to recompute the
CMOs, which might be a basis for optimization.

24

Another variable that may be considered is the viewer position – depending on the
application we may be able to predict it beforehand, or we may periodically, or with any
significant change of view position, rearrange the CMO setup accordingly to reflect the
current viewer position. The question of how exactly to adjust the setup remains to be
researched. One idea might be to quickly estimate, on a large scale, which parts of the
scene are potentially reflected given the current viewer position and try to cover these with
the cubemap view as much as possible. Another, probably more expensive but also more
straight-forward approach, would be to try out a few random CMO setups and choose the
one that produces the least amount of unresolved pixels.

Note that changing the position of CMO requires its textures to be re-rendered and
acceleration structures to be recomputed. This is however not very expensive, as is the case
for example with light fields, and can be done on the fly.

For now it is advised to place the CMOs manually or randomly with the following
heuristics in mind:

• The position should be close to the reflector surface (not directly at it with self-
reflections enabled).

• The positions of different CMOs should be as far as possible from each other.

• The CMOs should be ordered by how likely they will successfully yield an intersection.

3.9 Dealing with Unresolved Intersections

q2
q1

q3
q4

p1

p2

forw

upright

tcrit

c

Figure 3.9: Explanation figure for alg. 4.

The algorithm may be unable to find the inter-
section. Depending on demands of the applica-
tion, we may choose to address this issue in one
of the following ways:

• Marking the pixels as unresolved, for ex-
ample with a specific color.

• Utilizing multiple intersection criteria, de-
scribed in section 3.4, to maximize the
probability of finding an intersection.

• Using the best candidate found, i.e. the
sample closest to being intersection.

• Filling the unresolved pixels with approxi-
mations, for example using traditional en-
vironment mapping (fig. 3.10), interpolat-
ing between neighbouring pixels etc.

• Filling with background (skybox texture,
. . .).

• Applying a different, possibly computa-
tionally more intensive method, such as
ray tracing, to fill in the missing information.

25

Figure 3.10: Filling the unresolved areas with environment mapping is fairly noticeable due
to its low accuracy, which contrasts with the rest of the reflections.

26

Data:

~c cubemap center point
~p1, ~p2 start and end point of the traced ray
~q1, ~q2, ~q3, ~q4 corner points of current acceleration cell
~up, ~right, ~forw direction vectors of the current cubemap side

1 Algorithm correct_t(t, correct_range)

2 if t > correct_range[1] then

3 return −∞
4 else if t < correct_range[0] then

5 return ∞
6 return t

7

8 tcrit ← line_plane_intersection(~p1, ~p2,~c,~c+ ~right,~c+ ~up)
9

10 if tcrit =∞ then

11 trange ← (−∞,∞)

12 else if (~p2 − ~p1) · ~forw > 0 then

13 trange ← (tcrit,∞)
14 else

15 trange ← (−∞, tcrit)
16 end

17

18 t1 ← correct_t(line_plane_intersection(~p1, ~p2,~c, ~q1, ~q2), trange)
19 t2 ← correct_t(line_plane_intersection(~p1, ~p2,~c, ~q2, ~q3), trange)
20 t3 ← correct_t(line_plane_intersection(~p1, ~p2,~c, ~q3, ~q4), trange)
21 t4 ← correct_t(line_plane_intersection(~p1, ~p2,~c, ~q4, ~q1), trange)
22

23 tnext ← max(min(t1, t2),min(t3, t4))
24 tprev ← min(max(t1, t2),max(t3, t4))
25

26 return tnext, tprev

Algorithm 4: Algorithm for computing acceleration structure boundaries shown in
figure 3.5. The computation of values ~q1, ~q2, ~q3, ~q4, ~up, ~right, ~forw is not included, for
simplicity. The algorithm has to deal with eliminating intersections that are on the
opposite side to the currently tested side of the cube. For this, an interval of allowed
intersection values (in terms of t) is constructed (trange). Function correct_t adjusts
the computed intersection according to this interval. Figure 3.9 helps to visualize this
algorithm. Alternatively, the approach described in section 3.7 could be used instead of
this algorithm.

27

Chapter 4

Implementation

Along with this work come implementations of some above mentioned algorithms. It is
provided as open-source software at GitHub1. The implementations include:

• gl_wrapper – simple C++ OpenGL-based rendering engine with example programs,

• examples of planar mirror and environment mapping written with gl_wrapper and

• the cubemap tracing algorithm (fragment shader version) written with gl_wrapper,
with and without acceleration.

The compute shader version of the algorithm is only partially implemented and could
not be tested. Also self-reflections aren’t working as intended, mainly because the bias
value is very difficult to set correctly and will probably require to be computed for each
ray individually. The development was done on an ordinary laptop with NVidia GeForce
GT 540M graphic card, under Ubuntu 16.04 operating system, with OpenGL version 4.5.0.
Two CMOs with 256 × 256 textures were mostly used during development, with window
size set to 640 × 480. Step length was empirically set to 0.001 (i.e. maximum of 10 000
samples per ray).

It is worth mentioning Blender2, an open-source 3D modelling and rendering tool, which
was used to model test scenes, render ray traced reference images, visualize the debugging
information gathered from shaders and also to make the final video of the project. When
using it, attention has to be paid to the fact that Blender uses a different coordinate system
than OpenGL.

4.1 Engine

OpenGL in itself offers only low-level GPU API. In order to be able to work with high-level
graphics concepts, such as scene management, usually an additional helper code has to
be written. For the purposes of this work a simple engine, called gl_wrapper, has been
created. Alternatively existing engines, such as OpenSceneGraph3 or GPUEngine4, could
be used.

1https://github.com/drummyfish/mirrors
2http://www.blender.org
3http://www.openscenegraph.org/
4https://github.com/Rendering-FIT/GPUEngine

28

https://github.com/drummyfish/mirrors
http://www.blender.org
http://www.openscenegraph.org/
https://github.com/Rendering-FIT/GPUEngine

The engine is for the sake of simplicity of use written as a single C++ header file
(similarly to for example glm library) and provides an object-oriented API with convenience
methods and high level functionality methods. The key features include:

• singleton GLSession class that handles OpenGL initialization, basic input callbacks
etc.,

• Shader class which handles shader loading and compilation, with additional support
for #include directive in shader code,

• transformation classes for easy camera and vertex transformation matrix generation,

• UniformVariable class for easy work with uniform shader variables,

• TransformFeedbackBuffer class which allows retrieving vertex buffer output values,
mostly for debugging purposes,

• Image2D class representing an image that can be used as a texture and saved/loaded
to/from a PPM file,

• texture classes (Texture2D, TextureCubeMap) for easy texture management,

• FrameBuffer class for rendering to texture,

• Geometry3D class for easy 3D geometry management, with possibility to save/load
to/from an OBJ file,

• convenience functions for creating basic geometrical shapes,

• ReflectionTraceCubeMap – a helper class for cubemap tracing algorithm,

• CameraHandler class with pre-programmed camera control,

• classes (Printable, ErrorWriter) for debugging and OpenGL error checking,

• Profiler class for performance measuring,

• ShaderLog class that serves as a support for debugging shaders,

• helper functions (for easy loading text from files, . . .) and types (texel, . . .),

• no additional library dependencies, aside from OpenGL, glew, freeglut and glm.

The library structure in form of class diagram is shown in fig. 4.4.

4.2 Basic Algorithm

The basic form of the fragment shader version of cubemap tracing is implemented in
cubemap folder of the project repository. A custom scene (846 tris) made with Blender,
a low-polygon version of Sponza (29705 tris, created from the original version also with the
help of Blender) and an edited version of a scene5 (4674 tris) found at Blendswap website
were used for testing.

Algorithm 1 is implemented as a GLSL shader in shader_quad.fs file. It has not yet
been heavily optimized.

5http://www.blendswap.com/blends/view/63351, provided under CC-BY by irokrhus

29

http://www.blendswap.com/blends/view/63351

4.3 Acceleration

The computation of acceleration structure has been implemented both as CPU and GPU
code with compute_acceleration_texture_sw() and compute_acceleration_texture()

methods of ReflectionTraceCubeMap class, respectively. Example result is shown in fig.
4.1. The GPU version uses Frame Buffer Objects and a fragment shader. For each MIP
map level i > 0 and for each cubemap side s a fullscreen quad is rendered, textured with
s side image of MIP map level i− 1, invoking a fragment shader which samples four texels
corresponding to each fragment coordinates, computes the distance minimum and maximum
and writes them to the output color (R and G channels, B channel is used for mirror mask
if needed). Alternatively, compute shaders could be used, but would require further GPU
support.

Acceleration significantly reduces the number of iterations needed to find the intersec-
tion, as seen in fig. 5.1. However it improves the overall performance only by a small
amount, probably due to the complexity of alg. 4 and/or inefficient implementation.

Computation of compute shader version of the acceleration structure has also been
implemented with compute_cs_acceleration_texture() method, using compute shaders,
as they are required for the algorithm itself. In current state it only works with 1024×1024
textures. The result is also stored in MIP maps as shown in fig. 4.2, but because of the
different subdivision not all levels and texels are used. It is computed as follows.

For each level a dispatch of resolution corresponding to given level is invoked. Each
workgroup of the invocation, consisting of a single thread, computes the minimum/maxi-
mum pair by iterating over the corresponding cell of 32 texels and stores the pair in the
corresponding pixel. A more efficient way would be to have workgroups of 32 threads that
would utilize atomicMin/atomicMax functions on shared variables, but these do not sup-
port floating point data. GL_NV_shader_atomic_float extension adds the support, but
only for atomicAdd and atomicExchange6. The best way to optimize the process would be
to use a parallel reduction with shared memory and thread synchronization.

Figure 4.1: The acceleration structure is stored in MIP maps. Minima are stored in red
channel, maxima in green. Here are shown MIP map levels 0 to 3 of one of the cubemap
sides.

6https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_float.txt

30

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_float.txt

Figure 4.2: All four levels of one side of the acceleration structure for compute shaders,
stored in the same way as the structure in fig 4.1, but subdivided as shown in fig. 3.6, from
left to right: 1024 × 1024, 256 × 128, 32 × 32, 8 × 4.

4.4 Compute Shader Version

The compute shader version has not been completed. It was planned to use an OpenGL
extension NV_shader_thread_group7, which provides a convenient way of communication
between the workgroup threads, in form of ballotThreadNV function. It allows each invo-
cation to set one bit of a shared 32-bit value. This is well usable to distribute the cell mask.
GPUs without support for this extension can use other means of communication, such as
shared memory.

Figure 4.3: Blender was used to help visualize debugging information from shaders, convert
and make test scenes, render reference images and other important tasks.

7https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt

31

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt

4.5 Debugging

Debugging complex shaders may be a challenging task because the OpenGL pipeline has
been designed to transfer data from CPU to GPU, not the other way around. There is
therefore no trivial way to send debugging info back from shader code. For this reason
a debugging support has been programmed as a part of gl_wrapper. ShaderLog class uses
Shader Storage Object Buffers (SSBOs) to allow GLSL shaders to write data to a debug
log in a way similar to classic programs writing to standard output.

In order to use the shader log, the shader has to include (using gl_wrapper) a code in
shader_log_include.txt file. This code will allow the shader to use logging functions and
constants, such as shader_log_write_vec3(...), shader_log_write_char(...) etc. As
a next step an instance of ShaderLog class is created in the C++ program, which will allow
the data to be retrieved from GPU and written out to standard output.

Shader code can also sometimes be tested on CPU with the glm library, which mimics
the GLSL language. With shader logs available, Blender is a useful tool for visualizing the
data in 3D space (fig. 4.3).

32

GPUObject

load_from_gpu

update_gpu

Printable

print

Geometry3D

draw_as_triangles

add_vertices

add_triangles

ShaderLog

clear

get_number_of_lines

bind

set_print_limit

Texture

bind

set_mipmap_level

get_texture_object

TransformationTRS

set_translation

add_translation

get_translation

get_direction_forward

set_rotation

set_scale

Image2D

get_width

get_height

clear

fill
save_ppm

load_ppm

set_pixel

get_pixel

get_data_pointer

Texture2D

image_data

set_parameter_int

TextureCubeMap

image_front

image_back

image_left

image_right

image_top

image_bottom

Profiler
time_measure_begin

time_measure_end

new_value

record_value

get_average_value

next_frame

reset

set_frame_skip

Transformation

get_matrix

TransformationTRSModel

TransformationTRSCamera

Shader

use

get_shader_program_number

loaded_succesfully

run_compute

UniformVariable

name

retrieve_location

update_int

update_mat3

GLSession

init

start

end

CameraHandler

camera_transformation

mouse_click_callback

mouse_move_callback

key_callback

ReflectionTraceCubemap

texture_color

texture_depth

texture_distance

texture_normal

set_viewport

unset_viewport

compute_acceleration_texture

compute_acceleration_texture_sw

compute_cs_acceleration_texture

TransformFeedbackBuffer
transform_feedback_begin

transform_feedback_end

print_byte

print_float

StorageBuffer
data

clear

bind

get_data_pointer

FrameBuffer
activate

deactivate

ErrorWriter

write_error

Figure 4.4: gl_wrapper class diagram

33

Chapter 5

Results

This chapter presents the achieved results of the work. Fig. 5.3 shows comparison of effects
of different parameters. The results are comparable to ray tracing if CMOs are correctly
placed (as described in section 3.8) and, with current implementation, if there are no self-
reflections, which do not yet work correctly. The advantages of the resulting algorithm are
mainly following:

• Its execution time is not correlated with scene or reflector geometry complexity.

• It is independent of the scene representation (e.g. triangle meshes, volumetric etc.); as
long as we’re able to render the cubemaps, the algorithm will work, as we’re working
with rendered depth profile, not the scene itself.

• The model of the scene (i.e. CMOs) is quite simple to recompute and does not take
a great amount of memory, unlike light fields. This allows for reflecting partially
dynamic scenes.

• It can be implemented with fragment shaders only. Use of compute shader will,
however, probably greatly improve it.

5.1 Performance

This section presents the tested performance of the implementation on different platforms
and with different parameters.

OpenGL query objects were used to measure performance. The Profiler class in
gl_wrapper allows to measure time using GL_TIME_ELAPSED queries and number of ras-
terized pixels using GL_SAMPLES_PASSED queries. This actually measures the number of
fragments that pass the depth test which may not be equal to rasterized pixels, but can be
close enough with reasonably shaped geometry and backface culling turned on. (The exact
number of rasterized mirror pixels could be counted with SSBOs.)

Table 5.1 shows a comparison of some of the existing methods described in section 2.3
and the new method. Table 5.2 shows the measured performance.

34

method N D T S storage vertex pixel geom. req. refl. env.

env. mapping yes no no no low low low no none low

virt. objects yes yes yes no low high low yes high mod.

light field map yes yes no yes high low mod. no high high

light field cube yes yes no no high low mod. no low high

cubemap tracing yes yes yes* yes* mod. low high no low mod.

Table 5.1: Updated comparison of existing mirror rendering methods as presented in
the work of Jingyi Yu et al. [22], to include the new algorithm. Compared is sup-
port for near/distant/touching/self-reflections (N/D/T/S), texture storage demands, per-
vertex/per-pixel computational demands, requirement for scene geometry and the cost of
dynamic reflectors and dynamic environment. The table shows that cubemap tracing trades
higher per-pixel computational demands for lower memory and precompute costs. * – The
feature should be supported, but hasn’t been fully implemented.

parameters NVidia GT 540M NVidia Titan X AMD Radeon RX 480

320×240, 256, A, S0 18.4 FPS, 1.80 µs 485.2 FPS, 0.06 µs 152.6 FPS, 0.18 µs
640×480, 256, A, S0 7.4 FPS, 1.28 µs 198.6 FPS, 0.04 µs 69 FPS, 0.11 µs
320×240, 256, A, S1 29.2 FPS, 1.23 µs 612.8 FPS, 0.04 µs 321.2 FPS, 0.09 µs
640×480, 256, A, S1 9.6 FPS, 0.91 µs 284.8 FPS, 0.02 µs 120.8 FPS, 0.06 µs
320×240, 256, S0 21.4 FPS, 1.77 µs 500.4 FPS, 0.06 µs 226.8 FPS, 0.12 µs
640×480, 256, S0 7.8 FPS, 1.19 µs 229.4 FPS, 0.04 µs 111 FPS, 0.06 µs
320×240, 256, E, S0 4.2 FPS, 8.91 µs 165 FPS, 0.22 µs 62.8 FPS, 0.5 µs
640×480, 256, E, S0 1.6 FPS, 6.71 µs 78 FPS, 0.12 µs 26.6 FPS, 0.3 µs
640×480, 128, A, S0 5.4 FPS, 1.77 µs 141.8 FPS, 0.05 µs 55 FPS, 0.14 µs
640×480, 512, E, S0 8.8 FPS, 1.11 µs 180.2 FPS, 0.04 µs 74.8 FPS, 0.09 µs
640×480, 128, A, L, E, S0 11 FPS, 0.81 µs 456.6 FPS , 0.02 µs 139 FPS, 0.05 µs
640×480, 512, A, L, S0 10.4 FPS, 0.89 µs 232.8 FPS, 0.03 µs 77.8 FPS, 0.07 µs
320×240, 256, A, L, S0 31.6 FPS, 1.92 µs 654.6 FPS, 0.04 µs 202.4 FPS, 0.13 µs
640×480, 256, A, L, E, S0 13.2 FPS, 0.66 µs 505.8 FPS, 0.01 µs 189.6 FPS, 0.03 µs
640×480, 256, L, S0 21.2 FPS, 0.41 µs 536.2 FPS, 0.01 µs 225 FPS, 0.03 µs
640×480, 256, L, E, S0 2.6 FPS, 3.69 µs 140.2 FPS, 0.06 µs 45.4 FPS, 0.17 µs
640×480, 256, A, L, E, S, S0 5.2 FPS, 1.61 µs 202.8 FPS, 0.04 µs 75.4 FPS, 0.09 µs
640×480, 256, L, E, S, S0 2.2 FPS, 5.01 µs 100 FPS, 0.09 µs 30.2 FPS, 0.25 µs
800×600, 256, L, S0 14 FPS, 0.38 µs N/A 155 FPS, 0.03 µs

128 8 ms, 7 ms 15 ms, 16 ms 6 ms, 1 ms
256 35 ms, 10 ms 49 ms, 19 ms 11 ms, 2 ms
512 136 ms, 14 ms 193 ms, 8 ms 31 ms, 2 ms

Table 5.2: Measured performance, parameters are in format: window resolution, cubemap
resolution, flags (A – acceleration, E – efficient (optimal) sampling, L – analytical inter-
section, S – self-reflections, S0/S1 – scene). Measured metrics were FPS and average time
per reflector pixel. The last three rows show times of CMO re-rendering and acceleration
structure recomputation in milliseconds. The scene and camera settings were left at default
values (the same as in fig. 5.3).

35

Figure 5.1: The figure shows the visual result (left) and the number of iterations needed to
trace the ray for each pixel, without (middle) and with (right) acceleration. The top line
shows distance threshold intersection criterion. The bottom line shows analytical intersec-
tion which allows for much shorter step length and much fewer iterations.

Figure 5.2: various results at the three test scenes

The biggest performance drop is usually caused by unresolved intersections that make
the algorithm trace the whole ray from within all CMOs. Acceleration seem to help with
this by allowing big skips over empty areas. Also using analytical intersection shows much
better performance than distance threshold because it leaves almost no pixels unresolved
and tolerates a bigger step size. Table 5.2 shows that the algorithm works at interactive
rates on high-end GPUs, and with certain settings even on an ordinary GPU.

36

ray tracing env. mapping

cubemap tracing: distance threshold cubemap tracing: analytical intersection

as above, different CMO placement as left, filled with env. mapping

cubemap tracing: self-reflections

(not working correctly)
cubemap tracing: analytical intersection

Figure 5.3: results – comparison of different parameters

37

Chapter 6

Future Work

This work made only a few steps in one possible direction towards solving the interactive
reflection problem and leaves many things for future research, including:

• completing the compute shader version of the algorithm,

• experimenting with greater number CMOs,

• using different scene-to-texture projections (eg. paraboloids),

• using different technologies (eg. CUDA, OpenCL, Vulkan, Direct3D etc.),

• using different acceleration structures,

• testing different ordered samplings and dynamic sampling strategy switching (as ex-
plained in section 3.5),

• addressing potential aliasing issues when reflections cause subsampling of the scene,

• automatically placing the CMOs in the scene,

• creating more efficient version of alg. 4 – the system of inequalities described in
section 3.7 could probably be used,

• testing the best combinations of possible parameters (step length, sampling strategies,
intersection criteria, . . .),

• constructing hybrid algorithms, i.e. combining with other methods.

Use of paraboloids instead of cubemaps could be worth testing. A single paraboloid
captures only half the view of a cubemap [10], so either a greater number of them should be
used or dual-paraboloid technique could take place. Paraboloids might more easily avoid
conditional jumps in code, but the projection isn’t rectilinear, so the rays would generally
not be projected to straight lines. This would also affect the acceleration structure.

Another unaddressed issue are view-dependent effects, such as specular reflections. Only
diffuse materials were used in this work so the issue wasn’t apparent, but can happen as
illustrated in fig. 6.1. The solution would be to apply deferred shading at the level of
CMOs, i.e. the algorithm would, instead of directly returning color, return parameters
of the intersected surface point (i.e. diffuse color, normal, position etc.) and leave the
computation of the final color for later stages.

38

α

β
n

S

Figure 6.1: The viewer sees the reflection of the surface S. From their point of view view-
dependent effects should be computed with respect to angle β, but the presented algorithms
return the color computed with respect to the CMO, i.e. angle α, which is different. This
can be solved by returning surface parameters instead of color.

39

Chapter 7

Conclusion

This work provided a summary of research on the topic of accurate interactive reflection ren-
dering on non-planar mirrors and proposed a new algorithm, called cubemap tracing, based
on capturing the scene from multiple positions into cubemap textures. It was implemented
with OpenGL, accelerated, tested on different platforms and the results were evaluated.
Possibly more efficient version of the algorithm, that would use compute shaders, was also
described and is left for future implementation.

The advantages as well as disadvantages of the method lie in possibilities of parameter-
ization – different parameters, such as step length or different sampling strategies, can be
combined, the CMOs can be placed at different places in the scene etc. In agreement with
initial expectations, the algorithm still has to make tradeoffs and so the ultimate method
for reflection rendering remains yet to be found, and will probably also have to wait for the
evolution of graphic hardware.

The algorithm implementation remains in a state suitable for research and testing but
is in many ways unfinished and not much usable in practice. Despite the efforts put into
debugging, the code still contains bugs and inefficiencies and isn’t very robust. The reason
is a lot of time was spent on developing the framework for the application and trying out
many blind alleys while designing a brand new algorithm, but also that the main goal of
the work was to experiment rather than to create a robust implementation. The presented
algorithm nevertheless supports many desired features and shows great potential.

The work could continue by making a better, more stable implementation, integrating it
into a widely used engine and testing its usability in practice. The current implementation
is already able to run at interactive rates, with certain settings even on low-end GPUs,
and so we can suppose that the more elegant and potentially more efficient compute shader
version would greatly improve on it and offer very fast execution.

The contribution of this work is mainly in exploration of one of many possible research
paths and documenting the encountered basic issues that have to be dealt with. A new
algorithm was presented that can be placed next to the existing ones so that developers
have more options to choose from when faced with the problem of reflection rendering.

40

Bibliography

[1] Bentley, J. L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM. 1975.

[2] Blinn, J. F.; Newell, M. E.: Texture and reflection in computer generated images.
Communications of the ACM. 1976.

[3] Cabral, B.; Olano, M.; Nemec, P.: Reflection Space Image Based Rendering.
SIGGRAPH ’99. 1999.

[4] Crassin, C.; Neyret, F.; Sainz, M.; et al.: Interactive Indirect Illumination Using
Voxel Cone Tracing. I3D ’11 Symposium on Interactive 3D Graphics and Games.
2011.

[5] Deering, M.; Winner, S.; Schediwy, B.; et al.: The triangle processor and normal
vector shader: a VLSI system for high performance graphics. SIGGRAPH ’88
Proceedings of the 15th annual conference on Computer graphics and interactive
techniques. 1988.

[6] Eisemann, E.; Décoret, X.: Fast Scene Voxelization and Applications. I3D ’06. 2006.

[7] Greene, N.: Applications of World Projections. Journal IEEE Computer Graphics
and Applications. 1986.

[8] Greene, N.; Kass, M.; Miller, G.: Hierarchical Z-buffer visibility. SIGGRAPH ’93
Proceedings of the 20th annual conference on Computer graphics and interactive
techniques. 1993.

[9] Heidrich, W.; Lensch, H.; Cohen, M. F.; et al.: Light Field Techniques for Reflections
and Refractions. EGWR’99 Proceedings of the 10th Eurographics conference on
Rendering. 1999.

[10] Heidrich, W.; Seidel, H.-P.: View-independent Environment Maps. HWWS ’98
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware. 1998.

[11] Kilgard, M. J.: Improving Shadows and Reflections via the Stencil Buffer. 1999.
[Online; accessed 21-May-2017].

[12] il Kweon, G.; Hwang-bo, S.; hee Kim, G.; et al.: Wide-angle catadioptric lens with a
rectilinear projection scheme. APPLIED OPTICS. 2006.

41

[13] Lee, W.-J.; Shin, Y.; Lee, J.; et al.: Real-Time Ray Tracing on Future Mobile
Computing Platform. SIGGRAPH Asia 2013 Symposium on Mobile Graphics and
Interactive Applications. 2013.

[14] Lengyel, E.: Oblique View Frustum Depth Projection and Clipping. 2005.

[15] Ofek, E.; Rappoport, A.: Interactive Reflections on Curved Objects. SIGGRAPH
’98. 1998.

[16] Popescu, V.; Sacks, E.; Mei, C.: Sample-Based Cameras for Feed Forward Reflection
Rendering. IEEE Transactions on Visualization and Computer Graphics. 2006.

[17] Saito, T.; Takahashi, T.: Comprehensible rendering of 3-D shapes. SIGGRAPH ’90
Proceedings of the 17th annual conference on Computer graphics and interactive
techniques. 1990.

[18] Segal, M.; Akeley, K.: The OpenGL Graphics System: A Specification (version 4.5).
2016.

[19] Sintorn, E.; Olsson, O.; Assarsson, U.: Efficient Alias-free Shadow Algorithm for
Opaque and Transparent Objects using per-triangle Shadow Volumes. SIGGRAPH
Asia 2011. 2011.

[20] Tze-Yiu; Wan, L.; Leung, C.-S.; et al.: Unicube for Dynamic Environment Mapping.
IEEE Transactions on Visualization and Computer Graphics. 2011.

[21] Wald, I.; et al.: State of the Art in Ray Tracing Animated Scenes. 2009.

[22] Yu, J.; Yang, J.; McMillan, L.: Real-time reflection mapping with parallax.
Proceedings of the 2005 symposium on Interactive 3D graphics and games. 2005.

42

	Introduction
	Terminology Used in This Work

	Existing Approaches to Mirror Rendering
	Rendering Planar Mirrors
	Deferred Shading
	Rendering Non-Planar Mirrors
	Environment Mapping
	Parameterized Environment Maps
	Ray Tracing
	Virtual Objects
	Light Fields
	Reflection Space Image Based Rendering
	Sample-Based Cameras

	New Cubemap Tracing Algorithm
	Cubemap Properties
	Basic Principle
	Self-Reflections
	Intersection Criteria
	Ray Sampling Strategies
	Acceleration
	Use of Compute Shaders
	Number and Placement of CMOs
	Dealing with Unresolved Intersections

	Implementation
	Engine
	Basic Algorithm
	Acceleration
	Compute Shader Version
	Debugging

	Results
	Performance

	Future Work
	Conclusion
	Bibliography

